The requirements of the IAEA safety standards for Type B(U) packages include the thermal test as part of test sequences that represents accident conditions of transport. In comparison to mechanical tests, e.g., 9 m drop onto an unyielding target with short impact durations in a range of approximately 10 ms to 30 ms, the extended period of 30 min is defined in regulations for exposure of a package to a fire environment. Obviously, the required containment capability of the package has to be ensured not only after completing the test sequence but also over the course of the fire test scenario. Especially, deformations in the sealing area induced by the non-uniform thermal dilation of the package can affect the capability of the containment system. Consequently, thermo-mechanical analyses are required for the assessment. In this paper some aspects of finite element analysis (FEA) of transport packages with bolted closure systems under thermal loading are discussed. A generic FE model of a cask is applied to investigate the stress histories in the bolts, lid, and cask body as well as the deformations in the sealing area and the compression conditions of the gasket. Based on the parameter variations carried out, some recommendations in regard to modeling technique and results interpretation for such kind of analyses are finally given.
In Germany, the mechanical and thermal safety assessment of approved packages for the transport of RAM is carried out by BAM as the competent authority according to the International Atomic Energy Agency regulations. BAM was involved in several approval procedures with ductile cast iron containers containing wet intermediate level waste. These contents, which are not dried, only drained, consist of saturated ion exchange resin and a small amount of free water. Compared to the safety assessment of packages with dry content, attention must be paid to some more specific points. The physical and chemical compatibility of the content itself and of the content with materials of the package must be shown. From the mechanical resistance point of view, the package has to withstand the forces resulting from the freezing liquid. The most interesting point, however, is the pressure build-up inside the package due to vapourisation. This could be caused by radiolysis of the liquid and must be taken into account for the storage period. The paper deals primarily with the pressure build-up inside the package caused by the regulatory thermal test (30 min at 800uC) as part of the cumulative test scenario under accident conditions of transport. To determine the pressure, the temperature distribution in the content must be calculated for the whole period from the beginning of the thermal test until cooling down. In this case, calculating the temperature distribution requires, besides the consideration of conduction and heat radiation, consideration of evaporation and condensation including the associated processes of transport.
The crush test for light weight and low density type B packages was introduced for the first time into the 1985 edition of the International Atomic Energy Agency (IAEA) transport safety regulations. In the early 1970s, the need for an additional mechanical test besides or instead of the well known 9 m drop test was deliberated. Various authors and test facilities, including BAM and Sandia National Laboratories (SNL), were able to prove that the level of safety provided by IAEA drop and puncture tests in the regulations did not protect against dynamic crush forces to smaller packages. As early as the third PATRAM symposium held in 1971 (Richland, WA, USA), Robert F. Barker asked for '…a more strenuous crushing test for protecting small, light weight packages…'. BAM developed from research activities a proposal as to which types of packages should be subject to crush tests and how the crush tests should be performed, which was presented at the 5th PATRAM symposium held in 1978 (Las Vegas, NV, USA). At the IAEA, the possible need for a crush test was first mentioned in 1977. The subject for a discussion, besides the principal need for this test, was also the development of suitable set of crush test boundary conditions. It took more than four years of discussion until a dynamic crush test similar to today's test was recommended by experts to the IAEA regulatory revision panel. Finally, after a rigorous evaluation process in which also the boundary conditions were determined, the crush test was proposed to be incorporated into the IAEA regulations. BAM and SNL participated in the crush test development and implementation process right from the beginning in the early 1970s until its implementation in the IAEA regulations in 1985. Today, BAM performs crush test procedures according to para. 727(c) of TS-R-1, which have not been changed since their first implementation. Crush tests performed in 2002 at BAM will be discussed. These approval design tests were performed on birdcage pellet transport containers under normal and accident conditions according to the IAEA regulations.
Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m3 was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.