Abstract. Pollen-induced allergies are among the most prevalent non-contagious diseases, with about a quarter of the European population being sensitive to various atmospheric bioaerosols. In most European countries, pollen information is based on a weekly-cycle Hirst-type pollen trap method. This method is labour-intensive and requires narrow specialized abilities and substantial time, so that the pollen data are always delayed and subject to sampling- and counting-related uncertainties. Emerging new approaches to automatic pollen monitoring can, in principle, allow for real-time availability of the data with no human involvement. The goal of the current paper is to evaluate the capabilities of the new Plair Rapid-E pollen monitor and to construct a first-level pollen recognition algorithm. The evaluation was performed for three devices located in Lithuania, Serbia and Switzerland, with independent calibration data and classification algorithms. The Rapid-E output data include multi-angle scattering images and the fluorescence spectra recorded at several times for each particle reaching the device. Both modalities of the Rapid-E output were treated with artificial neural networks (ANNs) and the results were combined to obtain the pollen type. For the first classification experiment, the monitor was challenged with a large variety of pollen types and the quality of many-to-many classification was evaluated. It was shown that in this case, both scattering- and fluorescence-based recognition algorithms fall short of acceptable quality. The combinations of these algorithms performed better, exceeding 80 % accuracy for 5 out of 11 species. Fluorescence spectra showed similarities among different species, ending up with three well-resolved groups: (Alnus, Corylus, Betula and Quercus), (Salix and Populus) and (Festuca, Artemisia and Juniperus). Within these groups, pollen is practically indistinguishable for the first-level recognition procedure. Construction of multistep algorithms with sequential discrimination of pollen inside each group seems to be one of the possible ways forward. In order to connect the classification experiment to existing technology, a short comparison with the Hirst measurements is presented and the issue of false positive pollen detections by Rapid-E is discussed.
The aim of this paper is to describe a solution suitable for the automation of standard pollen information service (EN 16868:2019). We are describing the RealForAll integrated information system developed for automatic airborne pollen detection and real-time data delivery to end-users. This solution is based on the measurements from the Rapid-E airborne particle monitor. The system incorporates an AI-enabled subsystem based on a convolutional neural network that continuously retrieves raw data from Rapid-E and performs the classification of airborne pollen. The main advantages of this system reflect in real-time data delivery and independence of aerobiology experts during the pollen season.
Recent research in compressed sensing of magnetic resonance imaging (CS-MRI) emphasizes the importance of modeling structured sparsity, either in the acquisition or in the reconstruction stages. Subband coefficients of typical images show certain structural patterns, which can be viewed in terms of fixed groups (like wavelet trees) or statistically (certain configurations are more likely than others). Wavelet tree models have already demonstrated excellent performance in MRI recovery from partial data. However, much less attention has been given in CS-MRI to modeling statistically spatial clustering of subband data, although the potentials of such models have been indicated. In this paper, we propose a practical CS-MRI reconstruction algorithm making use of a Markov random field prior model for spatial clustering of subband coefficients and an efficient optimization approach based on proximal splitting. The results demonstrate an improved reconstruction performance compared with both the standard CS-MRI methods and the recent related methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.