We recall several known results about minimally 2-connected graphs, and show that they all follow from a decomposition theorem. Starting from an analogy with critically 2-connected graphs, we give structural characterizations of the classes of graphs that do not contain as a subgraph and as an induced subgraph, a cycle with a node that has at least two neighbors on the cycle. From these characterizations we get polynomial time recognition algorithms for these classes, as well as polynomial time algorithms for vertex-coloring and edge-coloring.
Truemper configurations are four types of graphs (namely thetas, wheels, prisms and pyramids) that play an important role in the proof of several decomposition theorems for hereditary graph classes. In this paper, we prove two structure theorems: one for graphs with no thetas, wheels and prisms as induced subgraphs, and one for graphs with no thetas, wheels and pyramids as induced subgraphs. A consequence is a polynomial time recognition algorithms for these two classes. In Part II of this series we generalize these results to graphs with no thetas and wheels as induced subgraphs, and in Parts III and IV, using the obtained structure, we solve several optimization problems for these graphs.
A hole in a graph is a chordless cycle of length at least 4. A theta is a graph formed by three internally vertex-disjoint paths of length at least 2 between the same pair of distinct vertices. A wheel is a graph formed by a hole and a node that has at least 3 neighbors in the hole. In this series of papers we study the class of graphs that do not contain as an induced subgraph a theta nor a wheel. In Part II of the series we prove a decomposition theorem for this class, that uses clique cutsets and 2-joins. In this paper we use this decomposition theorem to solve several problems related to finding induced paths and cycles in our class.
A hole in a graph is a chordless cycle of length at least 4. A theta is a graph formed by three internally vertex-disjoint paths of length at least 2 between the same pair of distinct vertices. A wheel is a graph formed by a hole and a node that has at least 3 neighbors in the hole. In this series of papers we study the class of graphs that do not contain as an induced subgraph a theta nor a wheel. In Part II of the series we prove a decomposition theorem for this class, that uses clique cutsets and 2-joins. In this paper we use this decomposition theorem to solve several problems related to finding induced paths and cycles in our class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.