Corticotropin-releasing hormone (Crh), a 41-residue polypeptide, activates two G-protein-coupled receptors, Crhr1 and Crhr2, causing (among other transductional events) phosphorylation of the transcription factor Creb. The physiologic role of these receptors is only partially understood. Here we report that male, but not female, Crhr2-deficient mice exhibit enhanced anxious behaviour in several tests of anxiety in contrast to mice lacking Crhr1. The enhanced anxiety of Crhr2-deficient mice is not due to changes in hypothalamic-pituitary-adrenal (HPA) axis activity, but rather reflects impaired responses in specific brain regions involved in emotional and autonomic function, as monitored by a reduction of Creb phosphorylation in male, but not female, Crhr2-/- mice. We propose that Crhr2 predominantly mediates a central anxiolytic response, opposing the general anxiogenic effect of Crh mediated by Crhr1. Neither male nor female Crhr2-deficient mice show alterations of baseline feeding behaviour. Both respond with increased edema formation in response to thermal exposure, however, indicating that in contrast to its central role in anxiety, the peripheral role of Crhr2 in vascular permeability is independent of gender.
Fear memories elicit multiple behavioral responses, encompassing avoidance or behavioral inhibition in response to threatening contexts. Context-specific freezing, reflecting fear-induced behavioral inhibition, has been proposed as one of the main risks factors for the development of anxiety disorders. We attempted to define the key hippocampal mediators of extinction in a mouse model of context-dependent freezing. Nine-week-old male C57BL/6J mice were trained and tested for contextual fear conditioning and extinction. Freezing behavior scored by unbiased sampling, was used as an index of fear. Proteomic, immunoblot and immunohistochemical approaches were employed to identify, verify and analyze the alterations of the hippocampal extracellular signalregulated kinases 1 and 2 (Erk-1/2). Targeted pharmacological inhibition of the Erk-1/2 activating kinase, the mitogen activated and extracellular signal-regulated kinase (Mek), served to establish the role of Mek/Erk signaling in extinction. When compared to acquisition, extinction of contextual freezing triggered a rapid activation of Erk-1/2 showing a distinctive time-course, nuclear localization and subcellular isoform distribution. These differences suggested that the upstream regulation and downstream effects of this pathway might be specific for each process. Dorsohippocampal injections of the Mek inhibitors U0126 (0.5 μg/site) and PD98059 (1.5 μg/site) immediately after the nonreinforced trials prevented Erk-1/2 activation and significantly impaired extinction. This effect was dissociable from potential actions on memory retrieval or reconsolidation. On the basis of these findings, we propose that hippocampal Mek/Erk signaling might serve as one of the key mediators of contextual fear extinction.
Concurrent proteomics analysis of the nuclei and mitochondria of MCF7 breast cancer cells identified 985 proteins (40% of all detected proteins) present in both organelles. Numerous
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.