Circulating cytokines and growth factors are regulators of inflammation and have been implicated in autoimmune and metabolic diseases. In this genome-wide association study (GWAS) of up to 8,293 Finns we identified 27 genome-widely significant loci (p < 1.2 × 10) for one or more cytokines. Fifteen of the associated variants had expression quantitative trait loci in whole blood. We provide genetic instruments to clarify the causal roles of cytokine signaling and upstream inflammation in immune-related and other chronic diseases. We further link inflammatory markers with variants previously associated with autoimmune diseases such as Crohn disease, multiple sclerosis, and ulcerative colitis and hereby elucidate the molecular mechanisms underpinning these diseases and suggest potential drug targets.
Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5–5%) variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10−8) including splice variants in LPA that lowered plasma lipoprotein(a) levels (P = 1.5×10−117). Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10−4), demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health Registers.
Leukocyte trafficking between the blood and the tissues is pivotal for normal immune responses. Cell-adhesion molecules (such as selectins and leukocyte integrins) and chemoattractants (such as chemokines) have well-established roles in supporting leukocyte exit from the blood. Emerging data now show that, for both leukocytes and endothelial cells, enzymatic reactions that are catalysed by cell-surface-expressed enzymes with catalytic domains outside the plasma membrane (known as ectoenzymes) also make crucial contributions to this process. Ectoenzymes can function physically as adhesion receptors and can regulate the recruitment of cells through their catalytic activities. Here, we provide new insights into how ectoenzymes--including nucleotidases, cyclases, ADP-ribosyltransferases, peptidases, proteases and oxidases--guide leukocyte traffic.
Highlights d Single-cell RNA sequencing of human lymph nodes unveils six types of LECs d LECs lining the floor and ceiling of the SCS, MS, and valve are the main types d LECs of the SCS floor and MS highly express neutrophil chemoattractants d Human MS LECs support neutrophil adhesion in the LN medulla via CD209
The biomarker glycoprotein acetylation (GlycA) has been shown to predict risk of cardiovascular disease and all-cause mortality. Here, we characterize biological processes associated with GlycA by leveraging population-based omics data and health records from >10,000 individuals. Our analyses show that GlycA levels are chronic within individuals for up to a decade. In apparently healthy individuals, elevated GlycA corresponded to elevation of myriad inflammatory cytokines, as well as a gene coexpression network indicative of increased neutrophil activity, suggesting that individuals with high GlycA may be in a state of chronic inflammatory response. Accordingly, analysis of infection-related hospitalization and death records showed that increased GlycA increased long-term risk of severe non-localized and respiratory infections, particularly septicaemia and pneumonia. In total, our work demonstrates that GlycA is a biomarker for chronic inflammation, neutrophil activity, and risk of future severe infection. It also illustrates the utility of leveraging multi-layered omics data and health records to elucidate the molecular and cellular processes associated with biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.