Abstract. This paper proves correctness of Nöcker's method of strictness analysis, implemented for Clean, which is an effective way for strictness analysis in lazy functional languages based on their operational semantics. We improve upon the work of Clark, Hankin and Hunt, which addresses correctness of the abstract reduction rules. Our method also addresses the cycle detection rules, which are the main strength of Nöcker's strictness analysis. We reformulate Nöcker's strictness analysis algorithm in a higherorder lambda-calculus with case, constructors, letrec, and a nondeterministic choice operator ⊕ used as a union operator. Furthermore, the calculus is expressive enough to represent abstract constants like Top or Inf . The operational semantics is a small-step semantics and equality of expressions is defined by a contextual semantics that observes termination of expressions. The correctness of several reductions is proved using a context lemma and complete sets of forking and commuting diagrams. The proof is based mainly on an exact analysis of the lengths of normal order reductions. However, there remains a small gap: Currently, the proof for correctness of strictness analysis requires the conjecture that our behavioral preorder is contained in the contextual preorder. The proof is valid without referring to the conjecture, if no abstract constants are used in the analysis.
Abstract. Various static analyses of functional programming languages that permit infinite data structures make use of set constants like Top, Inf, and Bot, denoting all terms, all lists not eventually ending in Nil, and all non-terminating programs, respectively. We use a set language that permits union, constructors and recursive definition of set constants with a greatest fixpoint semantics in the set of all, also infinite, computable trees, where all term constructors are non-strict. This paper proves decidability, in particular DEXPTIME-completeness, of inclusion of co-inductively defined sets by using algorithms and results from tree automata and set constraints. The test for set inclusion is required by certain strictness analysis algorithms in lazy functional programming languages and could also be the basis for further set-based analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.