AIMTo provide new insights in treatment of colitis and ischemia and reperfusion in rats using stable gastric pentadecapeptide BPC 157.METHODSMedication [BPC 157, L-NAME, L-arginine (alone/combined), saline] was bath at the blood deprived colon segment. During reperfusion, medication was BPC 157 or saline. We recorded (USB microscope camera) vessel presentation through next 15 min of ischemic colitis (IC-rats) or reperfusion (removed ligations) (IC + RL-rats); oxidative stress as MDA (increased (IC- and IC + RL-rats)) and NO levels (decreased (IC-rats); increased (IC + RL-rats)) in colon tissue. IC + OB-rats [IC-rats had additional colon obstruction (OB)] for 3 d (IC + OB-rats), then received BPC 157 bath.RESULTSCommonly, in colon segment (25 mm, 2 ligations on left colic artery and vein, 3 arcade vessels within ligated segment), in IC-, IC + RL-, IC + OB-rats, BPC 157 (10 μg/kg) bath (1 mL/rat) increased vessel presentation, inside/outside arcade interconnections quickly reappeared, mucosal folds were preserved and the pale areas were small and markedly reduced. BPC 157 counteracted worsening effects induced by L-NAME (5 mg) and L-arginine (100 mg). MDA- and NO-levels were normal in BPC 157 treated IC-rats and IC + RL-rats. In addition, on day 10, BPC 157-treated IC + OB-rats presented almost completely spared mucosa with very small pale areas and no gross mucosal defects; the treated colon segment was of normal diameter, and only small adhesions were present.CONCLUSIONBPC 157 is a fundamental treatment that quickly restores blood supply to the ischemically injured area and rapidly activates collaterals. This effect involves the NO system.
Background and purpose We focused on the, yet undescribed, therapy effect of the stable gastric pentadecapeptide BPC 157 in hippocampal ischemia/reperfusion injuries, after bilateral clamping of the common carotid arteries in rats. The background is the proven therapy effect of BPC 157 in ischemia/reperfusion injuries in different tissues. Furthermore, there is the subsequent oxidative stress counteraction, particularly when given during reperfusion. The recovering effect it has on occluded vessels, results with activation of the alternative pathways, bypassing the occlusion in deep vein thrombosis. Finally, the BPC 157 therapy benefits with its proposed role as a novel mediator of Roberts’ cytoprotection and bidirectional effects in the gut‐brain axis. Materials and Methods Male Wistar rats underwent bilateral clamping of the common carotid arteries for a 20‐min period. At 30 s thereafter, we applied medication (BPC 157 10 µg/kg; or saline) as a 1 ml bath directly to the operated area, that is, trigonum caroticum. We documented, in reperfusion, the resolution of the neuronal damages sustained in the brain, resolution of the damages reflected in memory, locomotion, and coordination disturbances, with the presentation of the particular genes expression in hippocampal tissues. Results In the operated rats, at 24 and 72 hr of the reperfusion, the therapy counteracted both early and delayed neural hippocampal damage, achieving full functional recovery (Morris water maze test, inclined beam‐walking test, lateral push test). mRNA expression studies at 1 and 24 hr, provided strongly elevated ( Egr1, Akt1, Kras, Src, Foxo, Srf, Vegfr2, Nos3, and Nos1 ) and decreased ( Nos2, Nfkb ) gene expression ( Mapk1 not activated), as a way how BPC 157 may act. Conclusion Together, these findings suggest that these beneficial BPC 157 effects may provide a novel therapeutic solution for stroke.
: This review is focused on the healing of fistulas and stable gastric pentadecapeptide BPC 157. Assuming that the healing of the various wounds is essential also for the gastrointestinal fistulas healing, the healing effect on fistulas in rats, consistently noted with the stable gastric pentadecapeptide BPC 157, may raise several interesting possibilities. BPC 157 is originally an anti-ulcer agent, native to and stable in human gastric juice (for more than 24 h). Likely, it is a novel mediator of Robert’s cytoprotection maintaining gastrointestinal mucosal integrity. Namely, it is effective in the whole gastrointestinal tract, and heals various wounds (i.e., skin, muscle, tendon, ligament, bone; ulcers in the entire gastrointestinal tract; corneal ulcer); LD1 is not achieved. It is used in ulcerative colitis clinical trials, and now in multiple sclerosis, and addressed in several reviews. Therefore, it is not surprising that BPC 157 has documented consistent healing of the various gastrointestinal fistulas, external (esophagocutaneous, gastrocutaneous, duodenocutaneous, colocutaneous) and internal (colovesical, rectovaginal). Taking fistulas as a pathological connection, this rescue is verified with the beneficial effects in rats with the various gastrointestinal anastomoses, esophagogastric, jejunoileal, colo-colonic, ileoileal, esophagojejunal, esophagoduodenal, and gastrojejunal. This beneficial effect occurs equally when the gastrointestinal anastomoses are impaired with the application of NSAIDs, cysteamine, large bowel resection, as well as concomitant esophageal, gastric, and duodenal lesions and/or ulcerative colitis presentation, short bowel syndrome progression, liver and brain disturbances presentation. Particular aspects of the BPC 157 healing of the fistulas are especially emphasized.
SUMMARY -We present an isolate of Klebsiella pneumoniae OXA-48 isolated in a 68-year-old man who underwent radical prostatectomy due to prostate cancer. Th e antibiotic susceptibility testing to a wide range of antibiotics was performed by disk diff usion method and determination of minimal inhibitory concentrations. Th e isolate was classifi ed as multidrug-resistant. It showed intermediate susceptibility to imipenem and meropenem, resistance to ertapenem, and sensitivity only to colistin, amikacin, and trimethoprim-sulfamethoxazole. Th e isolate was positive for ESBLs, negative for AmpC. Polymerase chain reaction and sequencing revealed bla , bla CTX-M-15 and bla . Th e plasmid encoding OXA-48 ß-lactamase did not belong to any known PCR-based replicon typing. According to genotyping, the isolate belonged to ST37.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.