Low cost, low material waste and good accuracy in components with complex geometry are the main reasons for powder metallurgy to be considered as a promising manufacturing process for the future. Like wrought steel, sintered steel can also be heat treated to increase surface hardness and to improve strength. This paper compares mechanical properties of the hardened sintered steel with the sintered steel of the same powder metal SINT D30. Firstly, the static strength of both samples is determined by quasi-static tensile tests. Results are compared in stress strain diagram and they show that the tensile strength of the hardened sintered steel SINT D30 can surpass 700 MPa. The main focus of this study is however fatigue behaviour of the sintered steel. Both sets of samples are tested on a pulsating test machine with the load ratio of R = 0. The first sample is subjected to a load that corresponds to 90 % of the yield strength and is then gradually lowered to achieve one million stress cycles without breakage. Obtained results are then presented as Wöhler curves and compared in S-N diagram.
The paper discusses the computational and experimental approach for determination of the PM gears service life concerning bending fatigue in a gear tooth root. A proposed computational model is based on the stress-life approach where the stress field in a gear tooth root is determined numerically using FEM. The experimental procedure was done on a custom made back-to-back gear testing rig. The comparison between computational and experimental results has shown that the proposed computational approach is appropriate calculation method for service life estimation of sintered gears regarding tooth root strength. Namely, it was shown that in the case of proper heat treatment of tested gears, the tooth breakage occurred inside the interval with 95 % probability of failure, which has been determined using proposed computational model.
The paper presents a numerical modelling of fatigue crack initiation in thermally cut structural elements by using improved Tanaka–Mura crack nucleation model. The main goal of the study is to analyse the influence of different grain orientations generated with Voronoi tessellation on the crack initiation period. The numerical modelling of the crack initiation period is performed on the test specimens made of high strength steel with martensitic microstructure. Because the specimens are assumed to be thermally cut without any additional treatment, surface roughness is taken into account in the numerical simulation. Several computational analyses with different grain orientations are performed on the each stress level. Therefore, the stress cycles interval [N1, N2] in which the crack is expected to be initiated with the probability P(N) is determined by using statistical analyses of obtained computational results. Experimental testing is also performed on the uniaxial test machine by stress ratio R = 0.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.