The ubiquitous presence of mutagenic and potentially carcinogenic N-nitrosamine impurities in medicines has become a major issue in the pharmaceutical industry in recent years. Rigorous mitigation strategies to limit their amount in drug products are, therefore, needed. The removal of nitrite, which is a prerequisite reagent for the N-nitrosation of amines, has been acknowledged as one of the most promising strategies. We have conducted an extensive literature search to identify nineteen structurally diverse nitrite scavengers and screened their activity experimentally under pharmaceutically relevant conditions. In the screening phase, we have identified six compounds that proved to have the best nitrite scavenging properties: ascorbic acid (vitamin C), sodium ascorbate, maltol, propyl gallate, para-aminobenzoic acid (PABA), and l-cysteine. These were selected for investigation as inhibitors of the formation of N-methyl-N-nitrosoaniline (NMA) from N-methylaniline and N-nitroso-N’-phenylpiperazine (NPP) from N-phenylpiperazine in both solution and model tablets. Much faster kinetics of NMA formation compared to NPP was observed, but the former was less stable at high temperatures. Vitamin C, PABA, and l-cysteine were recognized as the most effective inhibitors under most studied conditions. The nitrite scavenging activity does not directly translate into N-nitrosation inhibitory effectiveness, indicating other reaction pathways may take place. The study presents an important contribution to identifying physiologically acceptable chemicals that could be added to drugs to prevent N-nitrosation during manufacture and storage.
The discovery and synthesis of new tyrosine-based inhibitors of DNA gyrase B (GyrB), which target its ATPase subunit, is reported. Twenty-four compounds were synthesized and evaluated for activity against DNA gyrase and DNA topoisomerase IV. The antibacterial properties of selected GyrB inhibitors were demonstrated by their activity against Staphylococcus aureus and Enterococcus faecalis in the low micromolar range. The most promising compounds, 8a and 13e, inhibited Escherichia coli and S. aureus GyrB with IC values of 40 and 30 µM. The same compound also inhibited the growth of S. aureus and E. faecalis with minimal inhibitory concentrations (MIC ) of 14 and 28 µg/mL, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.