The inconsistency of phytogenic feed additives’ (PFA) effects on the livestock industry poses a risk for their use as a replacement for antibiotic growth promoters. The livestock market is being encouraged to use natural growth promotors, but information is limited about the PFA mode of action. The aim of this paper is to present the complexity of compounds present in essential oils (EOs) and factors that influence biological effects of PFA. In this paper, we highlight various controls and optimization parameters that influence the processes for the standardization of these products. The chemical composition of EOs depends on plant genetics, growth conditions, development stage at harvest, and processes of extracting active compounds. Their biological effects are further influenced by the interaction of phytochemicals and their bioavailability in the gastrointestinal tract of animals. PFA effects on animal health and production are also complex due to various EO antibiotic, antioxidant, anti-quorum sensing, anti-inflammatory, and digestive fluids stimulating activities. Research must focus on reliable methods to identify and control the quality and effects of EOs. In this study, we focused on available microencapsulation techniques of EOs to increase the bioavailability of active compounds, as well as their application in the animal feed additive industry.
Supply chain presents a very complex field involving a large number of participants. The aim of the complete supply chain is finding an optimum from the aspect of all participants, which is a rather complex task. In order to ensure optimum satisfaction for all participants, it is necessary that the beginning phase consists of correct evaluations and supplier selection. In this study, the supplier selection was performed in the construction company, on the basis of a new approach in the field of multi-criteria model. Weight coefficients were obtained by DEMATEL (Decision Making Trial and Evaluation Laboratory) method, based on the rough numbers. Evaluation and the supplier selection were made on the basis of a new Rough EDAS (Evaluation based on Distance from Average Solution) method, which presents one of the latest methods in this field. In order to determine the stability of the model and the applicability of the proposed Rough EDAS method, an extension of the COPRAS and MULTIMOORA method by rough numbers was also performed in this study, and the findings of the comparative analysis were presented. Besides the new approaches based on the extension by rough numbers, the results are also compared with the Rough MABAC (MultiAttributive Border Approximation area Comparison) and Rough MAIRCA (MultiAttributive Ideal-Real Comparative Analysis). In addition, in the sensitivity analysis, 18 different scenarios were formed, the ones in which criteria change their original values. At the end of the sensitivity analysis, SCC (Spearman Correlation Coefficient) of the obtained ranges was carried out, confirming the applicability of the proposed approaches.
Abstract:The decision-making process requires the prior definition and fulfillment of certain factors, especially when it comes to complex areas such as supply chain management. One of the most important items in the initial phase of the supply chain, which strongly influences its further flow, is to decide on the most favorable supplier. In this paper a selection of suppliers in a company producing polyvinyl chloride (PVC) carpentry was made based on the new approach developed in the field of multi-criteria decision making (MCDM). The relative values of the weight coefficients of the criteria are calculated using the rough analytical hierarchical process (AHP) method. The evaluation and ranking of suppliers is carried out using the new rough weighted aggregated sum product assessment (WASPAS) method. In order to determine the stability of the model and the ability to apply the developed rough WASPAS approach, the paper analyzes its sensitivity, which involves changing the value of the coefficient λ in the first part. The second part of the sensitivity analysis relates to the application of different multi-criteria decision-making methods in combination with rough numbers that have been developed in the very recent past. The model presented in the paper is solved by using the following methods: rough Simple Additive Weighting (SAW), rough Evaluation based on Distancefrom Average Solution (EDAS), rough MultiAttributive Border Approximation area Comparison (MABAC), rough Višekriterijumsko kompromisno rangiranje (VIKOR), rough MultiAttributiveIdeal-Real Comparative Analysis (MAIRCA) and rough Multi-objective optimization by ratio analysis plus the full multiplicative form (MULTIMOORA). In addition, in the third part of the sensitivity analysis, the Spearman correlation coefficient (SCC) of the ranks obtained was calculated which confirms the applicability of all the proposed approaches. The proposed rough model allows the evaluation of alternatives despite the imprecision and lack of quantitative information in the information-management process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.