An integrated method, which combines Electronic Speckle Pattern Interferometry, impulse response measurements, finite element method simulations, and psychoacoustic tests, is proposed to evaluate the vibroacoustic behavior of a carbon fiber bouzouki. Three of the carbon fiber instruments are manufactured, and one is qualified via interferometric experimental measurements with reference to a traditional wooden bouzouki, which was evaluated for its sound and playability by the proposed method. Psychoacoustic tests were used to evaluate the sound and playability of the newly qualified carbon fiber bouzouki, which was further modeled by the finite element method and simulated. The simulation results agreed well with the experimental measurements. Furthermore, finite element simulation results of the qualified carbon fiber bouzouki were demonstrated with reference to the traditional wooden bouzouki experimental results, providing new findings crucial for the optimization of the manufacturing and the vibroacoustic behavior of the carbon fiber instrument. The proposed integrated method can be applied to a variety of carbon fiber stringed musical instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.