Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low conductivity. Here, we compare the mechanics of the conducting para-terminated 4,4'-di(methylthio)stilbene and moderately conducting 1,2-bis(4-(methylthio)phenyl)ethane to that of insulating meta-terminated 3,3'-di(methylthio)stilbene single-molecule junctions. We simultaneously measure force and conductance across single-molecule junctions and use force signatures to obtain independent evidence of junction formation and rupture in the meta-linked cross-conjugated molecule even when no clear low-bias conductance is measured. By separately quantifying conductance and mechanics, we identify the formation of atypical 3,3'-di(methylthio)stilbene molecular junctions that are mechanically stable but electronically decoupled. While theoretical studies have envisaged many plausible systems where quantum interference might be observed, our experiments provide the first direct quantitative study of the interplay between contact mechanics and the distinctively quantum mechanical nature of electronic transport in single-molecule junctions.
Cationic square planar Pt(II) complexes are reported with high degrees of intermolecular association. These complexes display thermotropic columnar liquid crystalline behavior in spite of having only a single side chain. Crystals undergo mechanochromic transformations that can be reversed with solvent.
Controlling electron transport through a single-molecule device is key to the realization of nanoscale electronic components. A design requirement for single molecule electrical devices is that the molecule must be both structurally and electrically connected to the metallic electrodes. Typically, the mechanical and electrical contacts are achieved by the same chemical moiety. In this study, we demonstrate that the structural role may be played by one group (for example, a sulfide) while the electrical role may be played by another (a conjugated chain of C═C π-bonds). We can specify the electrical conductance through the molecule by modulating to which particular site on the oligoene chain the electrode binds. The result is a device that functions as a potentiometer at the single-molecule level.
We study the effects of molecular structure on the electronic transport and mechanical stability of single-molecule junctions formed with Au point contacts. Two types of linear conjugated molecular wires are compared: those functionalized with methylsulfide or amine aurophilic groups at (1) both or (2) only one of its phenyl termini. Using scanning tunneling and atomic force microscope break-junction techniques, the conductance of mono- and difunctionalized molecular wires and its dependence on junction elongation and rupture forces were studied. Charge transport through monofunctionalized wires is observed when the molecular bridge is coupled through a S-Au donor-acceptor bond on one end and a relatively weak Au-π interaction on the other end. For monofunctionalized molecular wires, junctions can be mechanically stabilized by installing a second aurophilic group at the meta position that, however, does not in itself contribute to a new conduction pathway. These results reveal the important interplay between electronic coupling through metal-π interactions and quantum mechanical effects introduced by chemical substitution on the conjugated system. This study affords a strategy to deterministically tune the electrical and mechanical properties through molecular wires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.