The biological carbon pump (BCP) stores ∼1,700 Pg C from the atmosphere in the ocean interior, but the magnitude and direction of future changes in carbon sequestration by the BCP are uncertain. We quantify global trends in export production, sinking organic carbon fluxes, and sequestered carbon in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) future projections, finding a consistent 19 to 48 Pg C increase in carbon sequestration over the 21st century for the SSP3-7.0 scenario, equivalent to 5 to 17% of the total increase of carbon in the ocean by 2100. This is in contrast to a global decrease in export production of –0.15 to –1.44 Pg C y –1 . However, there is significant uncertainty in the modeled future fluxes of organic carbon to the deep ocean associated with a range of different processes resolved across models. We demonstrate that organic carbon fluxes at 1,000 m are a good predictor of long-term carbon sequestration and suggest this is an important metric of the BCP that should be prioritized in future model studies.
Numerous negative carbon isotope excursions (nCIEs) in the geologic record occurring over 10 4 -10 5 years are interpreted as episodes of massive carbon release. nCIEs help to illuminate the connection between past carbon cycling and climate variability. Theoretically, the size of a nCIE can be used to determine the mass of carbon released, provided that the carbon source is known or other environmental changes such as temperature or ocean pH can be constrained. A simple isotopic mass balance equation often serves as a first order estimate for the mass of carbon input, but this approach ignores the effects of negative carbon cycle-climate feedbacks. Here we show, using 432 earth system model simulations, that the mass of carbon release and associated environmental impacts for a nCIE of a given size and carbon source depend on the onset duration of that nCIE: the longer the nCIE onset duration, the greater the required carbon input in order to counterbalance the input of 13 C-enriched carbon through carbonate compensation and weathering feedbacks. On timescales >10 3 years, these feedbacks remove carbon from the atmosphere so that the relative rise in atmospheric CO 2 decreases with the nCIE onset duration. Consequently, the impacts on global temperature, surface ocean pH and saturation state are reduced if the nCIE has a long onset duration. The framework provided here demonstrates how constraints on the total nCIE duration and relative shape-together determining the onset duration-affect the interpretation of sedimentary nCIEs. Finally, we evaluate selected well-studied nCIEs, including the Eocene Thermal Maximum 2 (∼54 Ma), the Paleocene-Eocene Thermal Maximum (∼56 Ma), and the Aptian Oceanic Anoxic Event (∼120 Ma), in the context of our model-based framework and show how modeled environmental changes can be used to narrow down the most likely carbon emissions scenarios.
Abstract. In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO 2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO 2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO 2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C 4 MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO 2 concentrations increase, and the carbonclimate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO 2 concentration and CO 2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO 2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment. For PI, ocean and land contributions to the total feedback are of similar size, while in the LGM case the terrestrial feedback is dominant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.