High pressure NMR spectroscopy has developed into an important tool for studying conformational equilibria of proteins in solution. We have studied the amide proton and nitrogen chemical shifts of the 20 canonical amino acids X in the random-coil model peptide Ac-Gly-Gly-X-Ala-NH2, in a pressure range from 0.1 to 200 MPa, at a proton resonance frequency of 800 MHz. The obtained data allowed the determination of first and second order pressure coefficients with high accuracy at 283 K and pH 6.7. The mean first and second order pressure coefficients and for nitrogen are 2.91 ppm/GPa and −2.32 ppm/GPa2, respectively. The corresponding values and for the amide protons are 0.52 ppm/GPa and −0.41 ppm/GPa2. Residual dependent 1J1H15N-coupling constants are shown.
The introduction of multidimensional NMR spectroscopy was a breakthrough in biological NMR methodology because it allowed the unequivocal correlation of different spin states of the system. The introduction of large pressure perturbations in the corresponding radio frequency (RF) pulse sequences adds an extra structural dimension into these experiments. We have developed a microprocessor-controlled pressure jump unit that is able to introduce fast, strong pressure changes at any point in the pulse sequences. Repetitive pressure changes of 80 MPa in the sample tube are thus feasible in less than 30 ms. Two general forms of these experiments are proposed here, the pressure perturbation transient state spectroscopy (PPTSS) and the pressure perturbation state correlation spectroscopy (PPSCS). PPTSS can be used to measure the rate constants and the activation energies and activation volumes for the transition between different conformational states including the folded and unfolded state of proteins, for polymerization–depolymerization processes, and for ligand binding at atomic resolution. PPSCS spectroscopy correlates the NMR parameters of different pressure-induced states of the system, thus allowing the measurement of properties of a given pressure induced state such as a folding intermediate in a different state, for example, the folded state. Selected examples for PPTSS and PPSCS spectroscopy are presented in this Article.
For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.