We studied the requirement for potassium and for potassium transport activity for the biotechnologically important bacterium Corynebacterium glutamicum, which is used for large-scale production of amino acids. Different from many other bacteria, at alkaline or neutral pH, C. glutamicum is able to grow without the addition of potassium, resulting in very low cytoplasmic potassium concentrations. In contrast, at acidic pH, the ability for growth was found to depend on the presence of K ؉ . For the first time, we provide experimental evidence that a potential potassium channel (CglK) acts as the major potassium uptake system in a bacterium and proved CglK's function directly in its natural membrane environment. A full-length CglK protein and a separate soluble protein harboring the RCK domain can be translated from the cglK gene, and both are essential for full CglK functionality. As a reason for potassium-dependent growth limitation at acidic pH, we identified the impaired capacity for internal pH homeostasis, which depends on the availability and internal accumulation of potassium. Potassium uptake via CglK was found to be relevant for major physiological processes, like the activity of the respiratory chain, and to be crucial for maintenance of the internal pH, as well as for the adjustment of the membrane potential in C. glutamicum.
The homotrimeric, secondary active betaine carrier BetP from Corynebacterium glutamicum is a model system for stress-regulated transport in bacteria. Its activity responds to hyperosmotic stress and it harbors two different functions, transport catalysis (betaine uptake) and stimulus sensing, resp. activity regulation. Structural information from 2D and 3D crystals as well as functional analysis of monomerized BetP suggested the presence of conformational crosstalk between the individual protomers. To study whether the oligomeric state is functionally significant on a mechanistic level we generated heterooligomeric complexes of BetP in which single protomers within the trimer can be addressed. By testing dominant negative effects in a trimer of one active protomer combined with two protomers in which transport and regulation were abolished, we provide experimental evidence for the absence of functionally significant conformational crosstalk between the protomers on the level of both transport and regulation. This is supported by experiments using mutant forms of putative interacting signal donor and acceptor domains of individual BetP protomers. This result has important consequences for oligomeric transport proteins in general and BetP in particular.
Potassium accumulation is an essential aspect of bacterial response to diverse stress situations; consequently its uptake plays a pivotal role. Here, we show that the Gram-positive soil bacterium Corynebacterium glutamicum which is employed for the large-scale industrial production of amino acids requires potassium under conditions of ionic and non-ionic osmotic stress. Besides the accumulation of high concentrations of potassium contributing significantly to the osmotic potential of the cytoplasm, we demonstrate that glutamate is not the counter ion for potassium under these conditions. Interestingly, potassium is required for the activation of osmotic stress-dependent expression of the genes betP and proP. The Kup-type potassium transport system which is present in C. glutamicum in addition to the potassium channel CglK does not contribute to potassium uptake at conditions of hyperosmotic stress. Furthermore, we established a secondary carrier of the KtrAB type from C. jeikeium in C. glutamicum thus providing an experimental comparison of channel- and carrier-mediated potassium uptake under osmotic stress. While at low potassium availability, the presence of the KtrAB transporter improves both potassium accumulation and growth of C. glutamicum upon osmotic stress, at proper potassium supply, the channel CglK is sufficient.
receptor dimer and that ligand binding modifies domain mobilities intrinsic to the receptor structure, allowing it to sample a separate, active conformation mediated by network formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.