We study the parameter estimation for parabolic, linear, second-order, stochastic partial differential equations (SPDEs) observing a mild solution on a discrete grid in time and space. A high-frequency regime is considered where the mesh of the grid in the time variable goes to zero. Focusing on volatility estimation, we provide an explicit and easy to implement method of moments estimator based on squared increments. The estimator is consistent and admits a central limit theorem. This is established moreover for the joint estimation of the integrated volatility and parameters in the differential operator in a semi-parametric framework. Starting from a representation of the solution of the SPDE with Dirichlet boundary conditions as an infinite factor model and exploiting mixing-type properties of time series, the theory considerably differs from the statistics for semi-martingales literature. The performance of the method is illustrated in a simulation study.
We establish estimation methods to determine co-jumps in multivariate high-frequency data with nonsynchronous observations and market microstructure noise. The ex-post quadratic covariation of the signal part, which is modeled by an Itô-semimartingale, is estimated with a locally adaptive spectral approach. Locally adaptive thresholding allows to disentangle the co-jump and continuous part in quadratic covariation. Our estimation procedure implicitly renders spot (co-)variance estimators. We derive a feasible stable limit theorem for a truncated spectral estimator of integrated covariance. A test for common jumps is obtained with a wild bootstrap strategy. We give an explicit guideline how to implement the method and test the algorithm in Monte Carlo simulations. An empirical application to intra-day tick-data demonstrates the practical value of the approach.
This work develops change-point methods for statistics of high-frequency data. The main interest is the volatility of an Itô semi-martingale, which is discretely observed over a fixed time horizon. We construct a minimax-optimal test to discriminate different smoothness classes of the underlying stochastic volatility process. In a high-frequency framework we prove weak convergence of the test statistic under the hypothesis to an extreme value distribution. As a key example, under extremely mild smoothness assumptions on the stochastic volatility we thereby derive a consistent test for volatility jumps. A simulation study demonstrates the practical value in finite-sample applications.
We focus on estimating the integrated covariance of log-price processes in the presence of market microstructure noise. We construct an efficient unbiased estimator for the quadratic covariation of two Itô processes in the case where high-frequency asynchronous discrete returns under market microstructure noise are observed. This estimator is based on synchronization and multi-scale methods and attains the optimal rate of convergence. A Monte Carlo study analyzes the finite sample size characteristics of our estimator.
An efficient estimator is constructed for the quadratic covariation or integrated co-volatility matrix of a multivariate continuous martingale based on noisy and nonsynchronous observations under high-frequency asymptotics. Our approach relies on an asymptotically equivalent continuous-time observation model where a local generalised method of moments in the spectral domain turns out to be optimal. Asymptotic semi-parametric efficiency is established in the Cramér-Rao sense. Main findings are that nonsynchronicity of observation times has no impact on the asymptotics and that major efficiency gains are possible under correlation. Simulations illustrate the finite-sample behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.