Background— Coronary artery bypass grafting (CABG) using cardiopulmonary bypass (CPB) provides controlled operative conditions but induces a whole-body inflammatory response capable of initiating devastating morbidity and mortality. Although technically more demanding, deliberate avoidance of CPB in off-pump surgery attenuates the physiological insult associated with CABG. Methods and Results— To systematically assess the molecular mechanisms underlying the better-preserved remote organ function, we studied gene expression patterns in leukocytes and plasma proteomic response to on-pump and off-pump CABG. Proteomic analysis confirmed (tumor necrosis factor-α, interleukin [IL]-6, IL-10) and expanded (eg, interferon [IFN]-γ, granulocyte colony–stimulating factor [G-CSF], monocyte chemotactic protein-1, macrophage inflammatory protein-1β) the mediators released on CPB, whereas blood leukocyte transcriptomics suggested that circulating leukocytes are not primarily responsible for this response. Interestingly, release of some cytokines (eg, IL-6, IFN-γ, G-CSF) was observed on off-pump surgery to a similar extent but with delayed kinetics. A total of 45 of 4868 transcripts were identified to be significantly altered as a result of initiation of CPB. Systematic analysis of transcriptional activation by CPB revealed primarily genes involved in inflammation-related cell–cell communication (such as L-selectin or intercellular adhesion molecule-2) and signaling (such as IL-1, IL-8, or IL-18 receptors and toll-like receptors 4, 5, and 6), thus confirming a “primed” phenotype of circulating peripheral blood mononuclear cells. Conclusions— Gene array and multiplex protein analysis, only in concert, can illuminate the molecular mechanisms responsible for systemic sequelae of CPB and indicate that circulating leukocytes overexpress adhesion and signaling factors after contact with CPB, which potentially facilitates their trapping, eg, in the lungs and may promote a subsequent tissue-associated inflammatory response.
Sphingomyelinase (SMase) stimulation and subsequent ceramide generation are suggested to be involved in signal transduction of stress-induced apoptosis. We now show that apoptosis of human macrophages (MPhi) and fibroblasts initiated by oxidized low density lipoproteins (minimally modified LDL, mmLDL) is associated with an increase in acid SMase (aSMase, E.C. 3.1.4.12) expression and ceramide concentration. Application of a novel, potent, and specific inhibitor of aSMase expression (NB6) diminished the effects of mmLDL and C6-ceramide treatment by inhibiting transcription via Sp1 and AP-2. Moreover, apoptosis was abolished after mmLDL and C6-ceramide treatment of hereditary aSMase-deficient fibroblasts (from Niemann-Pick patients). We suggest that in mmLDL-initiated apoptosis 1) enhanced ceramide generation via aSMase appears to be required as well as 2) a positive feedback control of aSMase expression by the increase in intracellular ceramide concentration.
In line with SARS and MERS, the SARS-CoV-2/COVID-19 pandemic is one of the largest challenges in medicine and health care worldwide. SARS-CoV-2 infection/COVID-19 provides numerous therapeutic targets, each of them promising, but not leading to the success of therapy to date. Neither an antiviral nor an immunomodulatory therapy in patients with SARS-CoV-2 infection/COVID-19 or pre-exposure prophylaxis against SARS-CoV-2 has proved to be effective. In this review, we try to close the gap and point out the likely relationships among lysosomotropism, increasing lysosomal pH, SARS-CoV-2 infection, and disease process, and we deduce an approach for the treatment and prophylaxis of COVID-19, and cytokine release syndrome (CRS)/cytokine storm triggered by bacteria or viruses. Lysosomotropic compounds affect prominent inflammatory messengers (e.g., IL-1B, CCL4, CCL20, and IL-6), cathepsin-L-dependent viral entry of host cells, and products of lysosomal enzymes that promote endothelial stress response in systemic inflammation. As supported by recent clinical data, patients who have already taken lysosomotropic drugs for other pre-existing conditions likely benefit from this treatment in the COVID-19 pandemic. The early administration of a combination of antivirals such as remdesivir and lysosomotropic drugs, such as the antibiotics teicoplanin or dalbavancin, seems to be able to prevent SARS-CoV-2 infection and transition to COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.