SUMMARY Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.
Cancer gene discovery has relied extensively on analyzing tumors for gains and losses to reveal the location of oncogenes and tumor suppressor genes, respectively. Deletions of 1p36 are extremely common genetic lesions in human cancer, occurring in malignancies of epithelial, neural, and hematopoietic origin. Although this suggests that 1p36 harbors a gene that drives tumorigenesis when inactivated, the identity of this tumor suppressor has remained elusive. Here we use chromosome engineering to generate mouse models with gain and loss of a region corresponding to human 1p36. This approach functionally identifies chromodomain helicase DNA binding domain 5 (Chd5) as a tumor suppressor that controls proliferation, apoptosis, and senescence via the p19(Arf)/p53 pathway. We demonstrate that Chd5 functions as a tumor suppressor in vivo and implicate deletion of CHD5 in human cancer. Identification of this tumor suppressor provides new avenues for exploring innovative clinical interventions for cancer.
SUMMARY Glioblastomas display cellular hierarchies containing tumor-propagating glioblastoma stem cells (GSCs). STAT3 is a critical signaling node in GSC maintenance but molecular mechanisms underlying STAT3 activation in GSCs are poorly defined. Here we demonstrate that the non-receptor tyrosine kinase BMX activates STAT3 signaling to maintain self-renewal and tumorigenic potential of GSCs. BMX is differentially expressed in GSCs relative to non-stem cancer cells and neural progenitors. BMX knockdown potently inhibited STAT3 activation, expression of GSC transcription factors, and growth of GSC-derived intracranial tumors. Constitutively active STAT3 rescued the effects of BMX downregulation, supporting that BMX signals through STAT3 in GSCs. These data demonstrate that BMX represents a GSC therapeutic target and reinforces the importance of STAT3 signaling in stem-like cancer phenotypes.
SUMMARY Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts, and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.