With the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually defined or static connectivity. However, it is expected that modeling the dynamic generation and deletion of the links among neurons, locally and between different regions of the brain, is crucial to unravel important mechanisms associated with learning, memory and healing. Moreover, for many neural circuits that could potentially be modeled, activity data is more readily and reliably available than connectivity data. Thus, a framework that enables networks to wire themselves on the basis of specified activity targets can be of great value in specifying network models where connectivity data is incomplete or has large error margins. To address these issues, in the present work we present an implementation of a model of structural plasticity in the neural network simulator NEST. In this model, synapses consist of two parts, a pre-and a post-synaptic element. Synapses are created and deleted during the execution of the simulation following local homeostatic rules until a mean level of electrical activity is reached in the network. We assess the scalability of the implementation in order to evaluate its potential usage in the self generation of connectivity of large scale networks. We show and discuss the results of simulations on simple two population networks and more complex models of the cortical microcircuit involving 8 populations and 4 layers using the new framework.
Psychotic disorders are associated with metabolic abnormalities including alterations in glucose and lipid metabolism. A major challenge in the treatment of psychosis is to identify patients with vulnerable metabolic profiles who may be at risk of developing cardiometabolic co-morbidities. It is established that both central and peripheral metabolic organs use lipids to control energy balance and regulate peripheral insulin sensitivity. The endocannabinoid system, implicated in the regulation of glucose and lipid metabolism, has been shown to be dysregulated in psychosis. It is currently unclear how these endocannabinoid abnormalities relate to metabolic changes in psychosis. Here we review recent research in the field of metabolic co-morbidities in psychotic disorders as well as the methods to study them and potential links to the endocannabinoid system. We also describe the bioinformatics platforms developed in the EU project METSY for the investigations of the biological etiology in patients at risk of psychosis and in first episode psychosis patients. The METSY project was established with the aim to identify and evaluate multi-modal peripheral and neuroimaging markers that may be able to predict the onset and prognosis of psychiatric and metabolic symptoms in patients at risk of developing psychosis and first episode psychosis patients. Given the intrinsic complexity and widespread role of lipid metabolism, a systems biology approach which combines molecular, structural and functional neuroimaging methods with detailed metabolic characterisation and multi-variate network analysis is essential in order to identify how lipid dysregulation may contribute to psychotic disorders. A decision support system, integrating clinical, neuropsychological and neuroimaging data, was also developed in order to aid clinical decision making in psychosis. Knowledge of common and specific mechanisms may aid the etiopathogenic understanding of psychotic and metabolic disorders, facilitate early disease detection, aid treatment selection and elucidate new targets for pharmacological treatments.
No abstract
Finding clear connectome biomarkers for temporal lobe epilepsy (TLE) patients, in particular at early disease stages, remains a challenge. Currently, the whole-brain structural connectomes are analyzed based on coarse parcellations (up to 1,000 nodes). However, such global parcellation-based connectomes may be unsuitable for detecting more localized changes in patients. Here, we use a high-resolution network ($50,000-nodes overall) to identify changes at the local level (within brain regions) and test its relation with duration and surgical outcome. Patients with TLE (n = 33) and age-, sex-matched healthy subjects (n = 36) underwent high-resolution ($50,000 nodes) structural network construction based on deterministic tracking of diffusion tensor imaging. Nodes were allocated to 68 cortical regions according to the Desikan-Killany atlas. The connectivity within regions was then used to predict surgical outcome. MRI processing, network reconstruction, and visualization of network changes were integrated into the NICARA (https://nicara.eu). Lower clustering coefficient and higher edge density were found for local connectivity within regions in patients, but were absent for the global network between regions (68 cortical regions).Local connectivity changes, in terms of the number of changed regions and the magnitude of changes, increased with disease duration. Local connectivity yielded a better surgical outcome prediction (Mean value: 95.39% accuracy, 92.76% sensitivity, and 100% specificity) than global connectivity. Connectivity within regions, compared to structural connectivity between brain regions, can be a more efficient biomarker for epilepsy assessment and surgery outcome prediction of medically intractable TLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.