Background: Awareness of energy efficiency has been rising in the industrial and residential sectors but only recently in the health care sector.Purpose: To measure the energy consumption of modern CT and MRI scanners in a university hospital radiology department and to estimate energy-and cost-saving potential during clinical operation.
Materials and Methods:Three CT scanners, four MRI scanners, and cooling systems were equipped with kilowatt-hour energy measurement sensors (2-Hz sampling rate). Energy measurements, the scanners' log files, and the radiology information system from the entire year 2015 were analyzed and segmented into scan modes, as follows: net scan (actual imaging), active (room time), idle, and system-on and system-off states (no standby mode was available). Per-examination and peak energy consumption were calculated.
Results:The aggregated energy consumption imaging 40 276 patients amounted to 614 825 kWh, dedicated cooling systems to 492 624 kWh, representing 44.5% of the combined consumption of 1 107 450 kWh (at a cost of U.S. $199 341). This is equivalent to the usage in a town of 852 people and constituted 4.0% of the total yearly energy consumption at the authors' hospital. Mean consumption per CT examination over 1 year was 1.2 kWh, with a mean energy cost (6standard deviation) of $0.22 6 0.13. The total energy consumption of one CT scanner for 1 year was 26 226 kWh ($4721 in energy cost). The net consumption per CT examination over 1 year was 3580 kWh, which is comparable to the usage of a two-person household in Switzerland; however, idle state consumption was fourfold that of net consumption (14 289 kWh). Mean MRI consumption over 1 year was 19.9 kWh per examination, with a mean energy cost of $3.57 6 0.96. The mean consumption for a year in the system-on state was 82 174 kWh per MRI examination and 134 037 kWh for total consumption, for an energy cost of $24 127.
Conclusion:CT and MRI energy consumption is substantial. Considerable energy-and cost-saving potential is present during nonproductive idle and system-off modes, and this realization could decrease total cost of ownership while increasing energy efficiency.
Objective To investigate whether a microelectromechanical system (MEMS) inertial sensor module is as accurate as fiber-optic gyroscopes when classifying subjects as normal for clinical stance and gait balance tasks. Methods Data of ten healthy subjects were recorded simultaneously with a fiber-optic gyroscope (FOG) system of SwayStar™ and a MEMS sensor system incorporated in the Valedo® system. Data from a sequence of clinical balance tasks with different angle and angular velocity ranges were assessed. Paired t-tests were performed to determine significant differences between measurement systems. Cohen's kappa test was used to determine the classification of normal balance control between the two sensor systems when comparing the results to a reference database recorded with the FOG system. Potential cross-talk errors in roll and pitch angles when neglecting yaw axis rotations were evaluated by comparing 2D FOG and 3D MEMS recordings. Results Statistically significant (α=0.05) differences were found in some balance tasks, for example, “walking eight tandem steps” and various angular measures (p < 0.03). However, these differences were within a few percent (<2.7%) of the reference values. Tasks with high dynamic velocity ranges showed significant differences (p=0.002) between 2D FOG and 3D MEMS roll angles but no difference between 2D FOG and 2D MEMS roll angles. An almost perfect agreement could be obtained for both 2D FOG and 2D MEMS (κ=0.97) and 2D FOG and 3D MEMS measures (κ=0.87) when comparing measurements of all subjects and tasks. Conclusion MEMS motion sensors can be used for assessing balance during clinical stance and gait tasks. MEMS provides measurements comparable to values obtained with a highly accurate FOG. When assessing pitch and roll trunk sway measures without accounting for the effect of yaw, it is recommended to use angle and angular velocity measures for stance, and only angular velocity measures for gait because roll and pitch velocity measurements are not influenced by yaw rotations, and angle errors are low for stance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.