Daily torpor can provide significant energy and water savings in bats during cold ambient temperatures and food scarcity. However, it may reduce rates of foetal and juvenile development. Therefore, reproductive females should optimize development by minimizing times in torpor. To test this hypothesis, the use of torpor by female and male free-ranging Daubenton's bats (Myotis daubentonii) during reproduction (gestation, lactation, and post-lactation period) was investigated in 1998 and 1999. Temperature-sensitive radio transmitters were attached to the bats to measure skin temperature. Simultaneously, ambient temperature was recorded. While both sexes became torpid during daytime, male bats used daily torpor (>6 degrees C below individual active temperature) significantly more often during reproductive period (mean: 78.4 % of day time in May and 43 % in June) than females. Female bats went into daily torpor, particularly in late summer when juveniles were weaned (mean: 66.6 % of daytime). Lowest skin temperatures occurred in a female bat with 21.0 degrees C during post-lactation. Skin temperatures of male bats fluctuated from 16.8 degrees C in torpor to 37.2 degrees C during times of activity. There was a significant effect of reproductive period on skin temperature in females whereas mean ambient temperature had no significant effect. However, mean ambient temperature affected mean skin temperatures in males. Our findings indicate that female Daubenton's bats adopt their thermoregulatory behaviour in particular to optimize the juvenile development.
Bats are a biodiverse mammal order providing key ecosystem services such as pest suppression, pollination, and seed dispersal. Bats are also very sensitive to human actions, and significant declines in many bat populations have been recorded consequently. Many bat species find crucial roosting and foraging opportunities in European forests. Such forests have historically been exploited by humans and are still influenced by harvesting. One of the consequences of this pressure is the loss of key habitat resources, often making forests inhospitable to bats. Despite the legal protection granted to bats across Europe, the impacts of forestry on bats are still often neglected. Because forest exploitation influences forest structure at several spatial scales, economically viable forestry could become more sustainable and even favor bats. We highlight that a positive future for bat conservation that simultaneously benefits forestry is foreseeable, although more applied research is needed to develop sound management. Key future research topics include the detection of factors influencing the carrying capacity of forests, and determining the impacts of forest management and the economic importance of bats in forests. Predictive tools to inform forest managers are much needed, together with greater synergies between forest managers and bat conservationists.
We studied food intake of and estimated ingested energy in female and male Myotis daubentonii during the periods of pregnancy (period 1, 8 May-4 June) and of intense spermatogenetic activity (period 2, 24 July-22 August) over 8 years (1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003) in central Germany. We used radiotelemetry to determine the time spent foraging and marked animals with chemiluminescent light-sticks to determine prey attack rates. Body length, body mass, moisture content, and caloric content of chironomids, the main prey of Daubenton's bats, were measured to estimate the nightly food intake and, in consequence, energy intake. Pregnant females spent significantly more time foraging than males during period 1 and females during the post-lactation period. In contrast, male foraged longer during the period of highest spermatogenetic activity than during late spring and also significantly longer than post-lactating females. Based on a mean number of 8.3 prey attacks per minute, the time spent foraging, and a capture success rate of either 50 or 92%, calculated intake values with a feeding rate of 7.6 insects per minute (=92% capture success) were more consistent with literature data for other insectivorous bats than that of values calculated on the basis of a capture success rate of 50%. In the high capture-success model, calculated insect intake of female bats was 8.0 g during pregnancy and 4.9 g per day during post-lactation, providing 5.0 and 3.0 kJ of ingested energy per gram body mass per day. Calculated intake of male bats was 3.6 g insects per day during late spring and 8.0 g during period of intensive spermatogenesis, providing 2.6 and 5.7 kJ of ingested energy per gram body mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.