<p>Over the last few years, the amount of large and complex data in the public domain has increased enormously and new challenges arose in the representation, analysis and visualization of such data. Considering the number of space missions that provided and will provide remote sensing data, there is still the need of a system that can be dispatched in several remote repositories and being accessible from a single client of commodity hardware.</p><p>To tackle this challenge, at the DLR Institute for Software Technology we have defined a dual backend frontend system, enabling the interactive analysis and visualization of large-scale remote sensing data. The basis for all visualization and interaction approaches is CosmoScout VR, a visualization tool developed internally at DLR, and publicly available on Github, that allows the visualization of complex planetary data and large simulation data in real-time. The dual component of this system is based on an MPI framework, called Viracocha, that enables the analysis of large data remotely, and allows the efficient network usage about sending compact and partial results for interactive visualization in CosmoScout as soon as they are computed.</p><p>A node-based interface is defined within the visualization tool, and this lets a domain expert to easily define customized pipelines for processing and visualizing the remote data. Each &#8220;node&#8221; of this interface is either linked with a feature extraction module, defined in Viracocha, or to a rendering module defined directly in CosmoScout. Being this interface completely customizable by a user, multiple pipelines can be defined over the same dataset to enhance even more the visualization feedback for analysis purposes.</p><p>Being an ongoing project, on top of these tools, as a novel strategy in EO data processing and visualization, we plan to define and implement strategies based on Topological Data Analysis (TDA). TDA is an emerging set of technique for processing the data considering its topological features. These include both the geometric information associated to a point, as well all the non-geometric scalar values, like temperature and pressure, to name a few, that can be captured during a monitoring mission. One of the major theories behind TDA is Discrete Morse Theory, that, given a scalar value, is used to define a gradient on such function, extract the critical points, identify the region-of-influence of each critical point, and so on. This strategy is parameter free and enables a domain scientist to process large datasets without a prior knowledge of it.</p><p>An interesting research question, that it will be investigated during this project is the correlation of changes of critical points at different time steps, and the identification of deformation (or changes) across time in the original dataset.</p>
Many scientific applications deal with data from a multitude of different sources, e.g., measurements, imaging and simulations. Each source provides an additional perspective on the phenomenon of interest, but also comes with specific limitations, e.g. regarding accuracy, spatial and temporal availability. Effectively combining and analyzing such multimodal and partially incomplete data of limited accuracy in an integrated way is challenging. In this work, we outline an approach for an integrated analysis and visualization of the atmospheric impact of volcano eruptions. The data sets comprise observation and imaging data from satellites as well as results from numerical particle simulations. To analyze the clouds from the volcano eruption in the spatiotemporal domain we apply topological methods. Extremal structures reveal structures in the data that support clustering and comparison. We further discuss the robustness of those methods with respect to different properties of the data and different parameter setups. Finally we outline open challenges for the effective integrated visualization using topological methods.
Scientific Visualization is the transformation of abstract data, derived from observation or simulation, into readily comprehensible images, and has proven to play an indispensable part of the scientific discovery process in many fields of contemporary science. Since its inception two decades ago, the techniques of Scientific Visualization have aided scientists, engineers, medical practitioners, and others in the study of a wide variety of data sets including, for example, highperformance computing simulations, measured data from scanners (CAT, MR, confocal microscopy), Internet traffic, and financial records. One of the important themes being nurtured under the aegis of Scientific Visualization is the utilization of the broad bandwidth of the human sensory system in steering and interpreting complex processes and simulations involving voluminous data sets across diverse scientific disciplines. Since vision dominates our sensory input, strong efforts have been made to bring the mathematical abstraction and modeling to our eyes through the mediation of computer graphics. In June 2011, we organized a Dagstuhl seminar, with 54 participants, that focused on the four parts of this book. The seminar comprised talks from leaders in the field and breakout sessions on the four specific topics: Uncertainty Visualization, Multifield Visualization, Biomedical Visualization, and Scalable Visualization. This book is a culmination of the four topics with contributed chapters from the participants for each of the four parts of the book. We would like to thank all of the authors for their thoughtful and insightful contributed chapters. We would also like to thank Catherine Waite and Lynn Brandon from Springer UK for their assistance and patience in generating this book.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.