Monocytes and macrophages are critical effectors and regulators of inflammation and the innate immune response, the immediate, pre-programmed arm of the immune system. Dendritic cells initiate and regulate the highly pathogen-specific adaptive immune responses, and are central to the development of immunologic memory and tolerance. Recent in vivo experimental approaches in the mouse have unveiled new aspects of the developmental and lineage relationships among these cell populations. Despite this, the origin and differentiation cues for many tissue macrophages, monocytes, and dendritic cell subsets in mice, and the corresponding cell populations in humans, remain to be elucidated.White blood cells or leukocytes are a diverse group of cell types that mediate the body's immune response. They circulate through the blood and lymphatic system and are recruited to sites of tissue damage and infection. Leukocyte subsets are distinguished by functional and physical characteristics. They have a common origin in hematopoietic stem cells and develop along distinct differentiation pathways in response to internal and external cues. The mononuclear phagocyte system represents a subgroup of leucocytes originally described as a population of bone marrow-derived myeloid cells that circulate in the blood as monocytes and populate tissues as macrophages in the steady state and during inflammation (1). In different tissues they can show significant heterogeneity with respect to phenotype, homeostatic turnover and function. The discovery of dendritic cells (DCs) as a distinct lineage of mononuclear phagocytes, specialized in antigen presentation to T cells and the initiation and control of immunity (2), revealed additional roles of these cells in shaping the immune response to pathogens, vaccines and tumors, as well as additional heterogeneity. Whereas a detailed map of the relationship between monocytes, DCs and their progenitors begins to emerge, other areas like the origin and renewal of tissue macrophage subsets remain less defined. (Fig. 1A) circulate in the blood, bone marrow, and spleen and do not proliferate in a steady state (3,4). Monocytes represent immune effector cells, equipped with chemokine Monocytes
Activation of beta-catenin in CML granulocyte-macrophage progenitors appears to enhance the self-renewal activity and leukemic potential of these cells.
Because ethical restrictions limit in vivo studies of the human hemato-lymphoid system, substitute human to small animal xenotransplantation models have been employed. Existing models, however, sustain only limited development and maintenance of human lymphoid cells and rarely produce immune responses. Here we show that intrahepatic injection of CD34+ human cord blood cells into conditioned newborn Rag2-/-gammac-/- mice leads to de novo development of B, T, and dendritic cells; formation of structured primary and secondary lymphoid organs; and production of functional immune responses. This provides a valuable model to study development and function of the human adaptive immune system in vivo.
Langerhans cells (LCs) are bone marrow (BM)-derived epidermal dendritic cells (DCs) that represent a critical immunologic barrier to the external environment, but little is known about their life cycle. Here, we show that in lethally irradiated mice that had received BM transplants, LCs of host origin remained for at least 18 months, whereas DCs in other organs were almost completely replaced by donor cells within 2 months. In parabiotic mice with separate organs, but a shared blood circulation, there was no mixing of LCs. However, in skin exposed to ultraviolet light, LCs rapidly disappeared and were replaced by circulating LC precursors within 2 weeks. The recruitment of new LCs was dependent on their expression of the CCR2 chemokine receptor and on the secretion of CCR2-binding chemokines by inflamed skin. These data indicate that under steady-state conditions, LCs are maintained locally, but inflammatory changes in the skin result in their replacement by blood-borne LC progenitors.Langerhans cells (LCs) are members of a family of highly specialized antigen-presenting cells called dendritic cells (DCs) 1-3 . They are typically localized in the basal and suprabasal layers of the epidermis and represent the principal hematopoietic barrier to the external environment. LCs are well equipped to ingest foreign antigens that breach the skin. Upon activation, LCs increase their expression of major histocompatibility complex (MHC) class II and costimulatory molecules and migrate to the T cell areas of regional lymph nodes (LNs) where they initiate a systemic immune response by presenting processed antigens to T cells 1,4 .Given the importance of LCs in skin immunity, the mobilization of LCs to regional lymph nodes as well as the recruitment of LC precursors from the circulation into the skin must be tightly regulated events. Although we are beginning to understand the mechanisms that regulate the migration of LCs from the epidermis to regional LNs during inflammatory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.