In this paper we explore convex reformulation strategies for non-convex quadratically constrained optimization problems (QCQPs). First we investigate such reformulations using Pataki’s rank theorem iteratively. We show that the result can be used in conjunction with conic optimization duality in order to obtain a geometric condition for the S-procedure to be exact. Based upon known results on the S-procedure, this approach allows for some insight into the geometry of the joint numerical range of the quadratic forms. Then we investigate a reformulation strategy introduced in recent literature for bilinear optimization problems which is based on adjustable robust optimization theory. We show that, via a similar strategy, one can leverage exact reformulation results of QCQPs in order to derive lower bounds for more complicated quadratic optimization problems. Finally, we investigate the use of reformulation strategies in order to derive characterizations of set-copositive matrix cones. Empirical evidence based upon first numerical experiments shows encouraging results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.