A new strategy to achieve easily scalable triple stimuli-responsive elastomeric opal films for applications as stretch-tunable photonic band gap materials is reported. Novel monodisperse highly functional core-interlayer-shell beads are obtained by semicontinuous emulsion polymerization featuring a temperature-sensitive fluorescent rhodamine dye either locally restricted in the core or the shell of prepared beads. After extrusion and compression molding, homogeneous elastomeric opal films with fascinating stretch-tunable and temperature-dependent fluorescent properties can be obtained. Applying strains of only a few percent lead to significant blue shift of the reflected colors making these films excellent candidates for applications as deformation sensors. Higher strains up to 90% lead to a tremendous Bragg reflection color change caused by transition from the (111) to the (200) lattice plane. The well-ordered opaline structure with its stop band at the emission frequency of the incorporated fluorescent dye shows remarkable angle-dependent fluorescence suppression. Herein described elastomeric opal films can be valuable in a wide range of applications such as rewritable 3D optical data storage, tunable laser action, and sensing materials.
Nanocapsules composed of a poly(vinylferrocene)-block-poly(methyl methacrylate) shell and a hydrophobic liquid core are prepared in water. The nanocapsule shells display a patchy structure with poly(vinylferrocene) patches with sizes of 25 ± 3 nm surrounded by poly(methyl methacrylate). The functional nanopatches can be selectively oxidized, thereby influencing the colloidal morphology and introducing polar domains in the nanocapsule shell. The hydrophobic to hydrophilic transition in the redox-responsive nanopatches can be advantageously used to release a hydrophobic payload encapsulated in the core by an oxidation reaction.
Asymmetric Faradaic system based on organometallic electrodes shows suppression of parasitic water reactions and remarkable selectivity in redox-mediated electrosorption of micropollutants.
Well-defined poly(2-(methacryloyloxy)ethyl ferrocenecarboxylate) (PFcMA) brushes were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP) on cross-linked polystyrene particles. The ATRP of FcMA monomer was reinvestigated leading to molar masses up to 130 kg mol–1 with a good reaction control and high monomer conversion (91%). The SI-ATRP was done with different amounts of initiator in the PS particle shell leading to PFcMA surface conformations from “mushroom-like” to dense “brush-like” polymers, which could be confirmed by dynamic light scattering (DLS) experiments. Redox-responsive behavior of the PFcMA shell was investigated by DLS and cyclic voltammetry (CV) measurements indicating a tremendous increase in the hydrodynamic volume of the ferrocene-containing shell. The transformation of PFcMA-grafted PS particles to magnetic iron oxides after thermal treatment could be investigated by SQUID magnetization measurements showing the typical hysteresis for ferromagnetic material.
The living anionic copolymerization of isoprene and styrene in cyclohexane affords tapered block copolymers due to the highly disparate reactivity ratios of r I = 12.8 and r S = 0.051. Repeated addition of a mixture of these monomers was exploited to generate tapered multiblock copolymer architectures of the (AB) n type with up to 10 blocks (1 ≤ n ≤ 5), thereby subdividing the polymer chains in alternating flexible polyisoprene (PI) and rigid polystyrene (PS) segments. Three series of well-defined tapered multiblock copolymers with approximate molecular weights of 80, 240, and 400 kg/mol were prepared on the 100 g scale. Via this synthetic strategy polymer chains were divided in di-, tetra-, hexa-, octa-, and decablock tapered multiblock structures. Because of the living nature of the polymerization, low dispersities in the range 1.06–1.28 (decablock) were obtained. To ensure full monomer conversion prior to the addition of the isoprene/styrene mixture, kinetic Monte Carlo simulation was employed, permitting to simulate chain growth in silico by employing the known polymerization rates and rate constants k p. The synthesized tapered multiblock copolymers were characterized via SEC and selected samples via oxidative degradation of the polyisoprene block in solution, confirming the well-defined nature of the PS segments. Subsequently, the question was addressed, to which extent the tapered multiblock copolymers are capable of forming ordered nanosegregated morphologies. Detailed thermal, structural, and rheological investigations showed that the tapered multiblock copolymers with a molecular weight of 240 kg/mol formed ordered phases with the expected lamellar morphology. However, X-ray scattering data and transmission electron microscopy (TEM) images of the octablock and decablock copolymers reflect weakly ordered structures at ambient temperature. The domain spacing, d, was found to scale as d ∼ N 0.62, where N is the total degree of polymerization, suggesting stretching of chains and nonideal configurations. Following the structure factor, S(q), as a function of temperature revealed that the tapered multiblock copolymers undergo a fluctuation-induced first-order transition at the respective order-to-disorder transition temperature, T ODT. The viscoelastic response of the tapered copolymers was controlled by the nanodomain structure, the degree of segregation, nanodomain-bridging configurations of blocks, and also the proximity to the glass temperature of the vitrified PS domains. Tapered hexablock copolymers were found to best combine structural integrity and mechanical toughness, while maintaining a large strain at break (>900%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.