Millimeter-wave sensing using automotive radar imposes high requirements on the applied signal processing in order to obtain the necessary resolution for current imaging radar. High-resolution direction of arrival estimation is needed to achieve the desired spatial resolution, limited by the total antenna array aperture. This work gives an overview of the recent progress and work in the field of deep learning based direction of arrival estimation in the automotive radar context, i.e. using only a single measurement snapshot. Additionally, several deep learning models are compared and investigated with respect to their suitability for automotive angle estimation. The models are trained with model-and databased approaches for data generation, including simulated scenarios as well as real measurement data from more than 400 automotive radar sensors. Finally, their performance is compared to several baseline angle estimation algorithms like the maximum-likelihood estimator. All results are discussed with respect to the estimation error, the resolution of closely spaced targets and the total estimation accuracy. The overall results demonstrate the viability and advantages of the proposed data generation methods, as well as superresolution capabilities of several architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.