Spin manipulation using electric currents is one of the most promising directions in the field of spintronics. We used neutron scattering to observe the influence of an electric current on the magnetic structure in a bulk material.In the skyrmion lattice of MnSi, where the spins form a lattice of magnetic vortices similar to the vortex lattice in type II superconductors, we observe the rotation of the diffraction pattern in response to currents which are over five orders of magnitude smaller than those typically applied in experimental studies on current-driven magnetization dynamics in nanostructures. We attribute our observations to an extremely efficient coupling of inhomogeneous spin currents to topologically stable knots in spin structures. 1 arXiv:1012.3496v1 [cond-mat.str-el]
When an electron moves in a smoothly varying non-collinear magnetic structure, its spin-orientation adapts constantly, thereby inducing forces that act on both the magnetic structure and the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics. The topologically quantized winding number of so-called skyrmions, i.e., certain magnetic whirls, discovered recently in chiral magnets are theoretically predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday's law of induction, which inherits this topological quantization. Here we report Hall effect measurements, which establish quantitatively the predicted emergent electrodynamics. This allows to obtain quantitative evidence of the depinning of skyrmions from impurities at ultra-low current densities of only 10^6 A/m^2 and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between emergent and real electrodynamics of skyrmions in chiral magnets, and promises to be important for applications in the long-term.Comment: 24 pages, supplementary information file include
At a generic quantum critical point, the thermal expansion alpha is more singular than the specific heat c(p). Consequently, the "Grüneisen ratio," Gamma=alpha/c(p), diverges. When scaling applies, Gamma approximately T(-1/(nu z)) at the critical pressure p=p(c), providing a means to measure the scaling dimension of the most relevant operator that pressure couples to; in the alternative limit T-->0 and p not equal p(c), Gamma approximately 1/(p-p(c)) with a prefactor that is, up to the molar volume, a simple universal combination of critical exponents. For a magnetic-field driven transition, similar relations hold for the magnetocaloric effect (1/T) partial differential T/ partial differential H|(S). Finally, we determine the corrections to scaling in a class of metallic quantum critical points.
Only a few metallic phases have been identified in pure crystalline materials. These include normal, ferromagnetic and antiferromagnetic metals, systems with spin and charge density wave order, and superconductors. Fermi-liquid theory provides a basis for the description of all of these phases. It has been suggested that non-Fermi-liquid phases of metals may exist in some heavy-fermion compounds and oxide materials, but the discovery of a characteristic microscopic signature of such phases presents a major challenge. The transition-metal compound MnSi above a certain pressure (p(c) = 14.6 kbar) provides what may be the cleanest example of an extended non-Fermi-liquid phase in a three-dimensional metal. The bulk properties of MnSi suggest that long-range magnetic order is suppressed at p(c) (refs 7-12). Here we report neutron diffraction measurements of MnSi, revealing that sizeable quasi-static magnetic moments survive far into the non-Fermi-liquid phase. These moments are organized in an unusual pattern with partial long-range order. Our observation supports the existence of novel metallic phases with partial ordering of the conduction electrons (reminiscent of liquid crystals), as proposed for the high-temperature superconductors and heavy-fermion compounds.
Nearly seven decades of research on microwave excitations of magnetic materials have led to a wide range of applications in electronics. The recent discovery of topological spin solitons in chiral magnets, so-called skyrmions, promises high-frequency devices that exploit the exceptional emergent electrodynamics of these compounds. Therefore, an accurate and unified quantitative account of their resonant response is key. Here, we report all-electrical spectroscopy of the collective spin excitations in the metallic, semiconducting and insulating chiral magnets MnSi, Fe1-xCoxSi and Cu2OSeO3, respectively, using broadband coplanar waveguides. By taking into account dipolar interactions, we achieve a precise quantitative modelling across the entire magnetic phase diagrams using two material-specific parameters that quantify the chiral and the critical field energy. The universal behaviour sets the stage for purpose-designed applications based on the resonant response of chiral magnets with tailored electric conductivity and an unprecedented freedom for an integration with electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.