Due to the massive spread of a new Coronavirus (SARS-CoV-2), many European governments enacted rules and legislations in order to reduce social interactions and contain the spread of the virus. German authorities put in force a lockdown of all non-essential infrastructure, starting on 22 March 2020. These policies included the closing of sports clubs, fitness centres and community sports grounds. Most federal states prohibited social gatherings of more than two people, thereby further restricting opportunities to play sport and exercise together. The paper addresses how Germans adapted their leisure time sport and exercise (LTSE) activities in this unprecedented situation. Based on survey data representing the adult population (⩾ 14 years, N=1001, data collection 27 March to 6 April 2020), the paper shows a significant decline in LTSE activities at population level. Overall, 31% of Germans reduced their LTSE, while 27% maintained and 6% intensified their LTSE level. A share of 36% was not engaged in LTSE, either before or at the beginning of the lockdown. Younger age groups were more likely to maintain LTSE levels compared with older ones. Comparisons of ‘reducers’ and ‘maintainers/ intensifiers’ indicate that the latter group increased home-based workouts and outdoor endurance sports, while ‘reducers’ did not find adequate substitutes for their sporting routines.
The western Nyainqêntanglha Range on the Tibetan Plateau reaches an elevation of 7,162 m and is characterized by an extensive periglacial environment under semi‐arid climatic conditions. Rock glaciers play an important part of the water budget in high mountain areas and recent studies suggest that they may even act as climate‐resistant water storages. In this study we present the first rock glacier inventory of this region containing 1,433 rock glaciers over an area of 4,622 km. To create the most reliable inventory we combine manually created rock glacier outlines with an automated classification approach. The manual outlines were generated based on surface elevation data, optical satellite imagery and a surface velocity estimation. This estimation was generated via InSAR time series analysis with Sentinel‐1 data from 2016 to 2019. Our pixel‐based automated classification was able to correctly identify 87.8% of all rock glaciers in the study area at a true positive rate of 69.5%. In total, 65.9% of rock glaciers are classified as transitional with surface velocities of 1–10 cm/yr. In total, 18.5% are classified as active with higher velocities of up to 87 cm/yr. The southern windward side of the mountain range contains more numerous and more active rock glaciers. We attribute this to higher moisture availability supplied by the Indian Monsoon.
Abstract. Climate change and the associated rise in air temperature have affected the Tibetan Plateau to a significantly stronger degree than the global average over the past decades. This has caused deglaciation, increased precipitation and permafrost degradation. The latter in particular is associated with increased slope instability and an increase in mass-wasting processes, which pose a danger to infrastructure in the vicinity. Interferometric synthetic aperture radar (InSAR) analysis is well suited to study the displacement patterns driven by permafrost processes, as they are on the order of millimeters to decimeters. The Nyainqêntanglha range on the Tibetan Plateau lacks high vegetation and features relatively thin snow cover in winter, allowing for continuous monitoring of those displacements throughout the year. The short revisit time of the Sentinel-1 constellation further reduces the risk of temporal decorrelation, making it possible to produce surface displacement models with good spatial coverage. We created three different surface displacement models to study heave and subsidence in the valleys, seasonally accelerated sliding and linear creep on the slopes. Flat regions at Nam Co are mostly stable on a multiannual scale but some experience subsidence. We observe a clear cycle of heave and subsidence in the valleys, where freezing of the active layer followed by subsequent thawing cause a vertical oscillation of the ground of up to a few centimeters, especially near streams and other water bodies. Most slopes of the area are unstable, with velocities of 8 to 17 mm yr−1. During the summer months surface displacement velocities more than double on most unstable slopes due to freeze–thaw processes driven by higher temperatures and increased precipitation. Specific landforms, most of which have been identified as rock glaciers, protalus ramparts or frozen moraines, reach velocities of up to 18 cm yr−1. Their movement shows little seasonal variation but a linear pattern indicating that their displacement is predominantly gravity-driven.
Abstract. Permafrost as a climate-sensitive parameter and its occurrence and distribution play an important role in the observation of global warming. However, field-based permafrost distribution data and information on the subsurface ice content in the large area of the southern mountainous Tibetan Plateau (TP) are very sparse. Existing models based on boreholes and remote sensing approaches suggest permafrost probabilities for most of the Tibetan mountain ranges. Field data to validate permafrost models are generally lacking because access to the mountain regions in extreme altitudes is limited. The study provides geomorphological and geophysical field data from a north-orientated high-altitude catchment in the western Nyainqêntanglha Range. A multi-method approach combines (A) geomorphological mapping, (B) electrical resistivity tomography (ERT) to identify subsurface ice occurrence and (C) interferometric synthetic aperture radar (InSAR) analysis to derive multi-annual creeping rates. The combination of the resulting data allows an assessment of the lower occurrence of permafrost in a range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. Periglacial landforms such as rock glaciers and protalus ramparts are located in the periglacial zone from 5300–5600 m a.s.l. The altitudinal periglacial landform distribution is supported by ERT data detecting ice-rich permafrost in a rock glacier at 5500 m a.s.l. and ice lenses around the rock glacier (5450 m a.s.l.). The highest multiannual creeping rates up to 150 mm yr−1 are typically observed on these rock glaciers. This study closes the gap of unknown state of periglacial features and potential permafrost occurrence in a high-elevated basin in the western Nyainqêntanglha Range (Tibetan Plateau).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.