The biosynthesis of humulone, an antibacterial bitter acid from hops, was studied by isotope-incorporation experiments using 13 C-labelled glucose or 2 H 2 O. 13 C enrichments, 2 H enrichments and 13 C 13 C coupling patterns identify isovaleryl-CoA, malonyl-CoA and dimethylallyl pyrophosphate as precursors for humulone. Dimethylallyl pyrophosphate, which serves as a building block for the bitter acid, is generated via the deoxyxylulose pathway of terpenoid biosynthesis. The data confirm that a symmetrical intermediate is involved in humulone formation.
Fermentation experiments with Streptomyces toxytricini were performed using (5Z,8Z)-[10,11,12,12-(2)H]tetradeca-5,8-dienoic acid or a mixture of [2,2-(2)H(2)]- and [8,8,8-(2)H(3)]octanoic acid as supplements. (2)H NMR and mass spectroscopy confirmed the incorporation of (5Z,8Z)-[10,11,12,12-(2)H]tetradeca-5,8-dienoic acid into the C(13) side chain as well as into the C(6) side chain of lipstatin. Moreover, deuterium was incorporated into the C(6) side chain of lipstatin from the 8-position but not from the 2-position of octanoate. The data establish that the beta-lactone moiety of lipstatin is formed by condensation of a C(8) and a C(14) fatty acid with a concomitant exchange of the H-2 atoms of the C(8) fatty acid.
The lipase inhibitor lipstatin is biosynthesized in Streptomyces toxytricini via condensation of a C 14 precursor and a C 8 precursor, which are both obtained from fatty acid catabolism. To study the mechanism of this reaction in more detail, S. toxytricini was grown in medium containing a mixture of U-
Three putative intermediates in the biosynthesis of the lipase inhibitor lipstatin were synthesized in stable isotope-labeled form and were added to fermentation cultures of Streptomyces toxytricini. Biosynthetic lipstatin was isolated and analyzed by NMR spectroscopy. [3,10,11,12-(2)H]-(3S,5Z,8Z)-3-hydroxytetradeca-5,8-dienoic acid (9) was shown to serve as a direct biosynthetic precursor of lipstatin. [7,8-(2)H(2)]Hexylmalonate (11) was also incorporated into lipstatin, albeit at a relatively low rate. The leucine moiety of [(13)C-formyl,(15)N]-N-formylleucine (10) was diverted to lipstatin under loss of the (13)C-labeled formyl residue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.