Classic neurotransmitter phenotypes are generally predetermined and develop as a consequence of target-independent lineage decisions. A unique mode of target-dependent phenotype instruction is the acquisition of the cholinergic phenotype in the peripheral sympathetic nervous system. A body of work suggests that the sweat gland plays an important role to determine the cholinergic phenotype at this target site. A key issue is whether neurons destined to innervate the sweat glands express cholinergic markers before or only after their terminals make target contact. We employed cholinergic-specific over-expression of the vesicular acetylcholine transporter (VAChT) in transgenic mice to overcome sensitivity limits in the detection of initial cholinergic sweat gland innervation. We found that VAChT immunoreactive nerve terminals were present around the sweat gland anlage already from the earliest postnatal stages on, coincident selectively at this sympathetic target with tyrosine hydroxylase-positive fibers. Our results provide a new mechanistic model for sympathetic neuron-target interaction during development, with initial selection by the target of pioneering nerve terminals expressing a cholinergic phenotype, and subsequent stabilization of this phenotype during development. Keywords acetylcholine; development; transgene; vesicular transporterNoradrenaline is the principal neurotransmitter in the mammalian peripheral sympathetic nervous system (Elfvin et al., 1993). However, some 4% (Masliukov and Timmermans, 2004) of postganglionic neurons in most of the paravertebral sympathetic chain ganglia utilize acetylcholine (ACh) instead of noradrenaline. One target organ of these cholinergic neurons is the eccrine sweat glands in the skin. A functional cholinergic innervation of sweat glands is
Expression of Satb2 (Special AT-rich sequence-binding protein-2) elicits expression of the vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) in cultured rat sympathetic neurons exposed to soluble differentiation factors. Here, we determined whether or not Satb2 plays a similar role in cholinergic differentiation in vivo, by comparing the postnatal profile of Satb2 expression in the rodent stellate ganglion to that of VAChT and ChAT. Throughout postnatal development, VAChT and ChAT were found to be co-expressed in a numerically stable subpopulation of rat stellate ganglion neurons. Nerve fibers innervating rat forepaw sweat glands on P1 were VAChT immunoreactive, while ChAT was detectable at this target only after P5. The postnatal abundance of VAChT transcripts in the stellate ganglion was at maximum already on P1, whereas ChAT mRNA levels increased from low levels on P1 to reach maximum levels between P5 and P21. Satb2 mRNA was detected in cholinergic neurons in the stellate ganglion beginning with P8, thus coincident with the onset of unequivocal detection of ChAT immunoreactivity in forepaw sweat gland endings. Satb2 knockout mice exhibited no change in the P1 cholinergic VAChT/ChAT co-phenotype in stellate ganglion neurons. Thus, cholinergic phenotype maturation involves first, early target (sweat-gland)-independent expression and trafficking of VAChT, and later, potentially target- and Satb2-dependent elevation of ChAT mRNA and protein transport into sweat gland endings. In rat sudomotor neurons that, unlike mouse sudomotor neurons, co-express calcitonin gene-related peptide (CGRP), Satb2 may also be related to the establishment of species-specific neuropeptide co-phenotypes during postnatal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.