The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient's cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using a k-NN classifier showing improved accuracy compared to earlier studies.
The purpose of this paper is to examine how well the human induced pluripotent stem cell (hiPSC) colony images can be classified using error-correcting output codes (ECOC). Our image dataset includes hiPSC colony images from three classes (bad, semigood, and good) which makes our classification task a multiclass problem. ECOC is a general framework to model multiclass classification problems. We focus on four different coding designs of ECOC and apply to each one of them k-Nearest Neighbor (k-NN) searching, naïve Bayes, classification tree, and discriminant analysis variants classifiers. We use Scaled Invariant Feature Transformation (SIFT) based features in classification. The best accuracy (62.4%) is obtained with ternary complete ECOC coding design and k-NN classifier (standardized Euclidean distance measure and inverse weighting). The best result is comparable with our earlier research. The quality identification of hiPSC colony images is an essential problem to be solved before hiPSCs can be used in practice in large-scale. ECOC methods examined are promising techniques for solving this challenging problem.
Induced pluripotent stem cells (iPSC) can be derived from fully differentiated cells of adult individuals and used to obtain any other cell type of the human body. This implies numerous prospective applications of iPSCs in regenerative medicine and drug development. In order to obtain valid cell culture, a quality control process must be applied to identify and discard abnormal iPSC colonies. Computer vision systems that analyze visual characteristics of iPSC colony health can be especially useful in automating and improving the quality control process. In this paper, we present an ongoing research that aims at the development of local spatially-enhanced descriptors for classification of iPSC colony images. For this, local oriented edges and local binary patterns are extracted from the detected colony regions and used to represent structural and textural properties of the colonies, respectively. We preliminary tested the proposed descriptors in classifying iPSCs colonies according to the degree of colony abnormality. The tests showed promising results for both, detection of iPSC colony borders and colony classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.