17 alpha-Hydroxylase/C17-20-lyase (P450 17, CYP 17) and 5 alpha-reductase are the key enzymes in androgen biosynthesis and targets for the treatment of prostate cancer and benign prostatic hyperplasia. In the search of inhibitors for both enzymes, 23 pregnenolone- or progesterone-based steroids were synthesized bearing an oxime group connected directly or via a spacer to the steroidal D-ring. Tested for inhibition of human and rat P450 17, some pregnenolone (9, 11, 14) and a series of progesterone compounds (17-20) turned out to be highly active inhibitors of the human enzyme. The most active compound was Z-21-hydroxyiminopregna-5, 17(20)-dien-3 beta-ol (9) showing K(i) values of 44 and 3.4 nM for the human and rat enzymes, respectively, and a type II UV-difference spectrum indicating a coordinate bond between the oxime group and the heme iron. In contrast to the pregnenolones which showed no inhibition of 5 alpha-reductase isozymes 1 and 2, the progesterones 16, 17, 20, 21, and 23 showed marked inhibition, especially toward the type 2 enzyme. Compounds 17 and 20 were identified as potent dual inhibitors of both P450 17 and 5 alpha-reductase. Tested for selectivity, the most potent P450 17 inhibitors 9, 10, and 14 showed no or only marginal inhibition of P450 arom, P450 scc, and P450 TxA(2). Selected compounds were tested for inhibition of the target enzymes using whole-cell assays. Compounds 9-11 strongly inhibited P450 17 being coexpressed with NADPH-P450 reductase in E. coli cells, and 16, 20, and 23 markedly inhibited 5 alpha-reductase expressed in HEK 293 cells. Tested for in vivo activity, 9 (0.019 mmol/kg) decreased the plasma testosterone concentration in rats after 2 and 6 h by 57% and 44%.
In the search for potent inhibitors of P450 17, the key enzyme in androgen biosynthesis, a series of steroidal inhibitors were synthesized and tested toward rat and human P450 17. Small aliphatic heterocycles (aziridine, oxirane, thiirane, diaziridine, diazirine, azetidine) were introduced into the 17beta-position of anstrost-5-en-3beta-ol. After identifying that aziridine is the most suitable functional group to coordinate with the heme iron, modifications of the steroidal skeleton were performed for further optimization. A wide range of inhibitory potencies toward P450 17 were found for the 21 test compounds. The most potent inhibitors toward the human and rat enzyme were aziridine compounds 3 (IC(50) rat: 0.21 microM, K(i) = 3 nM; IC(50) human: 0.54 microM, K(i) = 8 nM), 5 (IC(50) rat: 0.43 microM, K(i) = 7 nM; IC(50) human: 0.29 microM, K(i) = 4 nM), and 8 (21R:21S = 1:1; IC(50) rat: 0.53 microM, K(i) = 9 nM; IC(50) human: 0.40 microM, K(i) = 6 nM) which were more potent than the reference ketoconazole (IC(50) rat: 67 microM; IC(50) human: 0.74 microM). The inhibitory potency depends markedly on the stereochemistry at C20 of the inhibitors. This effect is more pronounced for the rat enzyme. Tested for selectivity, the highly potent inhibitors show poor inhibitory activity toward P450 arom, P450 scc, P450 TxA(2), and 5alpha-reductase. Tested for in vivo activity, 3 and 8 (0.019 mmol/kg) decreased the plasma testosterone concentration in rats by 81% and 84% after 2 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.