Self-assembled monolayers (SAMs) of galactoside-terminated alkanethiols have protein-resistance properties which can be tuned via the degree of methylation [Langmuir 2005, 21, 2971-2980]. Specifically, a partially methylated compound was more resistant to nonspecific protein adsorption than the hydroxylated or fully methylated counterparts. We investigate whether this also holds true for resistance to the attachment and adhesion of a range of marine species, in order to clarify to what extent resistance to protein adsorption correlates with the more complex adhesion of fouling organisms. The partially methylated galactoside-terminated SAM was further compared to a mixed monolayer of ω-substituted methyl- and hydroxyl-terminated alkanethiols with wetting properties and surface ratio of hydroxyl to methyl groups matching that of the galactoside. The settlement (initial attachment) and adhesion strength of four model marine fouling organisms were investigated, representing both micro- and macrofoulers; two bacteria (Cobetia marina and Marinobacter hydrocarbonoclasticus), barnacle cypris larvae (Balanus amphitrite), and algal zoospores (Ulva linza). The minimum in protein adsorption onto the partially methylated galactoside surface was partly reproduced in the marine fouling assays, providing some support for a relationship between protein resistance and adhesion of marine fouling organisms. The mixed alkanethiol SAM, which was matched in wettability to the partially methylated galactoside SAM, consistently showed higher settlement (initial attachment) of test organisms than the galactoside, implying that both wettability and surface chemistry are insufficient to explain differences in fouling resistance. We suggest that differences in the structure of interfacial water may explain the variation in adhesion to these SAMs.
The synthesis of two galactose-terminated alkanethiols with the structural formula X-OC2H5NHCO(CH2)15SH (X = 2,3,4,6-tetra-O-methyl-beta-D-Gal or beta-D-Gal) is described. Single-component and mixed self-assembled monolayers (SAMs) of the methylated and nonmethylated compounds were prepared on gold and subsequently characterized with ellipsometry, contact angle goniometry, and infrared reflection-absorption spectroscopy. Studies of the irreversible protein adsorption onto the SAMs using ex-situ ellipsometry revealed very low levels of fibrinogen and lysozyme adsorption onto mixed SAMs displaying advancing water contact angles between 24 degrees and 45 degrees and below 45 degrees , respectively. A monomethylated compound (X = 6-O-methyl-beta-D-Gal) was also synthesized and assembled on gold. This particular compound was found to possess wettability properties corresponding to the low adsorption regime of the mixed SAMs, and the results from the same set of fibrinogen and lysozyme adsorption experiments showed very low levels of protein adsorption. Our findings suggest that the protein rejecting properties rely on a fine balance between the surface energy and/or hydrogen bond donating/accepting properties of the SAM surface.
Human milk oligosaccharides (HMOs) are recognized as benefiting breast-fed infants in multiple ways. As a result, there is growing interest in the synthesis of HMOs mimicking their natural diversity. Most HMOs are fucosylated oligosaccharides. α-l-Fucosidases catalyze the hydrolysis of α-l-fucose from the non-reducing end of a glucan. They fall into the glycoside hydrolase GH29 and GH95 families. The GH29 family fucosidases display a classic retaining mechanism and are good candidates for transfucosidase activity. We recently demonstrated that the α-l-fucosidase from Thermotoga maritima (TmαFuc) from the GH29 family can be evolved into an efficient transfucosidase by directed evolution ( Osanjo et al. 2007). In this work, we developed semi-rational approaches to design an α-l-transfucosidase starting with the α-l-fucosidase from commensal bacteria Bifidobacterium longum subsp. infantis (BiAfcB, Blon_2336). Efficient fucosylation was obtained with enzyme mutants (L321P-BiAfcB and F34I/L321P-BiAfcB) enabling in vitro synthesis of lactodifucotetraose, lacto-N-fucopentaose II, lacto-N-fucopentaose III and lacto-N-difucohexaose I. The enzymes also generated more complex HMOs like fucosylated para-lacto-N-neohexaose (F-p-LNnH) and mono- or difucosylated lacto-N-neohexaose (F-LNnH-I, F-LNnH-II and DF-LNnH). It is worth noting that mutation at these two positions did not result in a strong decrease in the overall activity of the enzyme, which makes these variants interesting candidates for large-scale transfucosylation reactions. For the first time, this work provides an efficient enzymatic method to synthesize the majority of fucosylated HMOs.
A new efficient synthesis for broad access to indoxyl glycosides was developed. Indoxylic acid allyl ester linked to a sugar structure served as the key intermediate in this route. Selective ester cleavage and mild decarboxylation led to the corresponding indoxyl glycosides in good yields. This synthesis was applied for preparation of indoxyl glycosides of fucose, sialic acid, and 6'-sialyl lactose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.