We examine whether stock price effects can be automatically predicted analyzing unstructured textual information in financial news. Accordingly, we enhance existing text mining methods to evaluate the information content of financial news as an instrument for investment decisions. The main contribution of this paper is the usage of more expressive features to represent text and the employment of market feedback as part of our word selection process. In our study, we show that a robust Feature Selection allows lifting classification accuracies significantly above previous approaches when combined with complex feature types. That is because our approach allows selecting semantically relevant features and thus, reduces the problem of over-fitting when applying a machine learning approach. The methodology can be transferred to any other application area providing textual information and corresponding effect data.
Elastic n-tier applications have non-stationary workloads that require adaptive control of resources allocated to them. This presents not only an opportunity in pay-as-you-use clouds, but also a challenge to dynamically allocate virtual machines appropriately. Previous approaches based on control theory, queuing networks, and machine learning work well for some situations, but each model has its own limitations due to inaccuracies in performance prediction. In this paper we propose a multi-model controller, which integrates adaptation decisions from several models, choosing the best. The focus of our work is an empirical model, based on detailed measurement data from previous application runs. The main advantage of the empirical model is that it returns high quality performance predictions based on measured data. For new application scenarios, we use other models or heuristics as a starting point, and all performance data are continuously incorporated into the empirical model's knowledge base. Using a prototype implementation of the multi-model controller, a cloud testbed, and an ntier benchmark (RUBBoS), we evaluated and validated the advantages of the empirical model. For example, measured data show that it is more effective to add two nodes as a group, one for each tier, when two tiers approach saturation simultaneously.
Abstract. The complexity of today's large-scale enterprise applications demands system administrators to monitor enormous amounts of metrics, and reconfigure their hardware as well as software at run-time without thorough understanding of monitoring results. The Elba project is designed to achieve an automated iterative staging to mitigate the risk of violating Service Level Objectives (SLOs). As part of Elba we undertake performance characterization of system to detect bottlenecks in their configurations. In this paper, we introduce our concrete bottleneck detection approach used in Elba, and then show its robustness and accuracy in various configurations scenarios. We utilize a wellknown benchmark application, RUBiS (Rice University Bidding System), to evaluate the classifier with respect to successful identification of different bottlenecks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.