We estimate a Markow-switching dynamic factor model with three states based on six leading business cycle indicators for Germany preselected from a broader set using the Elastic Net soft-thresholding rule. The three states represent expansions, normal recessions and severe recessions. We show that a two-state model is not sensitive enough to reliably detect relatively mild recessions when the Great Recession of 2008/2009 is included in the sample. Adding a third state helps to clearly distinguish normal and severe recessions, so that the model identifies reliably all business cycle turning points in our sample. In a real-time exercise the model detects recessions timely. Combining the estimated factor and the recession probabilities with a simple GDP forecasting model yields an accurate nowcast for the steepest decline in GDP in 2009Q1 and a correct prediction of the timing of the Great Recession and its recovery one quarter in advance.
We estimate a Markow-switching dynamic factor model with three states based on six leading business cycle indicators for Germany preselected from a broader set using the Elastic Net softthresholding rule. The three states represent expansions, normal recessions and severe recessions. We show that a two-state model is not sensitive enough to reliably detect relatively mild recessions when the Great Recession of 2008/2009 is included in the sample. Adding a third state helps to clearly distinguish normal and severe recessions, so that the model identifies reliably all business cycle turning points in our sample. In a real-time exercise the model detects recessions timely. Combining the estimated factor and the recession probabilities with a simple GDP forecasting model yields an accurate nowcast for the steepest decline in GDP in 2009Q1 and a correct prediction of the timing of the Great Recession and its recovery one quarter in advance.JEL-Codes: C530, E320, E370.
This paper provides a detailed assessment of the real-time forecast accuracy of a wide range of vector autoregressive models (VAR) that allow for both structural change and indicators sampled at different frequencies. We extend the literature by evaluating a mixed-frequency time-varying parameter VAR with stochastic volatility (MF-TVP-SV-VAR). Overall, the MF-TVP-SV-VAR delivers accurate now-and forecasts and, on average, outperforms its competitors. We assess the models' accuracy relative to expert forecasts and show that the MF-TVP-SV-VAR delivers better inflation nowcasts in this regard. Using an optimal prediction pool, we moreover demonstrate that the MF-TVP-SV-VAR has gained importance since the Great Recession.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.