Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide, a messenger molecule with multiple clinical implications. Understanding the activation of sGC is an important step for establishing new therapeutic principles. We have now overexpressed sGC in a baculovirus/Sf9 system optimized for high protein yields to facilitate spectral and kinetic studies of the activation mechanisms of this enzyme. It was expressed in a batch fermenter using a defined mixture of viruses encoding the alpha and beta1 subunits of the rat lung enzyme. The expressed enzyme was purified from the cytosolic fraction by anion exchange chromatography, hydroxyapatite chromatography, and size exclusion chromatography. By use of this new method 2.5 l culture yielded about 1 mg of apparently homogeneous sGC with a content of about one heme per heterodimer without the need of a heme reconstitution step. The enzyme did not contain stoichiometric amounts of copper. The basal activities of the purified enzyme were 153 and 1259 nmol min(-1) mg(-1) in the presence of Mg2+ and Mn2+, respectively. The nitric oxide releasing agent 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA/NO) stimulated the enzyme 160-fold with Mg2+, whereas the NO-independent activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) induced an increase in the activity of 101-fold at a concentration of 300 microM. The combination of DEA/NO (10 microM) and YC-1 (100 microM) elicited a dose-dependent synergistic stimulation with a maximum of a 792-fold increase over the basal activity in the presence of Mg2+, resulting in a specific activity of 121 micromol min(-1) mg(-1). The synergistic stimulation of DEA/NO and YC-1 was attenuated by the sGC inhibitor 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one (ODQ) (10 microM) by 94%. In a different experimental setup a saturated carbon monoxide solution in the absence of ambient oxygen or NO stimulated the enzyme 15-fold in the absence and 1260-fold in the presence of YC-1 compared to an argon control. The heme spectra of the enzyme showed a shift of the Soret peak from 432 to 399 and 424 nm in the presence of DEA/NO or carbon monoxide, respectively. The heme spectra were not affected by YC-1 in the absence or in the presence of DEA/NO or of carbon monoxide, which reflects the fact that YC-1 does not interact directly with the heme group of the enzyme. In summary, this study shows that our expression/purification procedure is suitable for producing large amounts of highly pure sGC which contains one heme per heterodimer without a reconstitution step. The activator experiments show that in a synergistic stimulation with YC-1 sGC can be activated maximally both by nitric oxide and by carbon monoxide and that YC-1 does not directly act via heme. The described method should help to facilitate the investigation of the new therapeutic principle of NO-independent guanylyl cyclase activators.
Blood oxygenized by veno-arterial extracorporeal membrane oxygenation (ECMO) can be returned to the aorta (central cannulation) or to peripheral arteries (axillar, femoral). Hemodynamic effects of these cannulation types were analyzed in a mock loop with an aortic model representative of normal anatomy and compliance under physiological pressures and flow rates. Pressures, flow rates, and contribution of ECMO flow to total flow as a measure of oxygen supply were monitored in the carotids. Steady or pulsatile ECMO flow, residual or no cardiac output, and intraaortic balloon pump counterpulsation were tested as independent factors. With residual heart function, central cannulation provided the best oxygenated flow and pressure to the carotid arteries (CA). Axillar cannulation preferentially perfused the right CA at the expense of the left CA. Femoral cannulation provided only lower amounts of oxygenated blood to both CA. Pulsation increased the surplus hemodynamic energy. Counterpulsation reduced flow with femoral cannulation but improved flow and pressure with axillar cannulation. Femoral cannulation failed to provide oxygenated blood to coronary and supraaortic arteries with residual heart function. Central cannulation provided the best hemodynamics and oxygen supply to the brain. With a resting heart but not with an ejecting heart, pulsatile ECMO flow enhanced CA hemodynamics.
In this study, we characterize age-related phenotypes of human hematopoietic stem cells (HSCs). We report increased frequencies of HSC, HPC and lineage negative cells in the elderly but a decreased frequency of multi-lymphoid progenitors. Aged human HSCs further exhibited a delay in initiating division ex vivo though without changes in their division kinetics. The activity of the small RhoGTPase Cdc42 was elevated in aged human hematopoietic cells and we identified a positive correlation between Cdc42 activity and the frequency of HSCs upon aging. The frequency of human HSCs polar for polarity proteins was, similar to the mouse, decreased upon aging, while inhibition of Cdc42 activity via the specific pharmacological inhibitor of Cdc42 activity, CASIN, resulted in re-polarisation of aged human HSCs with respect to Cdc42. Elevated activity of Cdc42 in aged HSCs thus contributed to age-related changes in HSCs. Xeno-transplants, using NBSGW mice as recipients, showed elevated chimerism in recipients of aged compared to young HSCs. Aged HSCs treated with CASIN ex vivo displayed an engraftment profile similar to recipients of young HSCs. Taken together, our work reveals strong evidence for a role of elevated Cdc42 activity in driving aging of human HSCs, and similar to mice, this presents a likely possibility for attenuation of aging in human HSCs.
Human umbilical vessels have been recognized as a valuable and widely available resource for vascular tissue engineering. Whereas endothelium-denuded human umbilical veins (HUVs) have been successfully seeded with a patient-derived neoendothelium, decellularized vessels may have additional advantages, due to their lower antigenicity. The present study investigated the effects of three different decellularization procedures on the histological, mechanical and seeding properties of HUVs. Vessels were decellularized by detergent treatment (Triton X-100, sodium deoxycholate, IGEPAL-CA630), osmotic lysis (3 m NaCl, distilled water) and peroxyacetic acid treatment. In all cases, nuclease treatments were required to remove residual nucleic acids. Decellularization resulted in a partial loss of fibronectin and laminin staining in the subendothelial layer and affected the appearance of elastic fibres. In addition to removing residual nucleic acids, nuclease treatment weakened all stainings and substantially altered surface properties, as seen in scanning electron micrographs, indicating additional non-specific effects. Detergent treatment and osmotic lysis caused failure stresses to decrease significantly. Although conditioned medium prepared from decellularized HUV did not severely affect endothelial cell growth, cells seeded on decellularized HUV did not remain viable. This may be attributed to the partial removal of essential extracellular matrix components as well as to changes of surface properties. Therefore, decellularized HUVs appear to require additional modifications in order to support successful cell seeding. Replacing the vessels' endothelium may thus be a superior alternative to decellularization when creating tissue-engineered blood vessels with non-immunogenic luminal interfaces.
The effects of the different types of soluble guanylate cyclase (sGC) stimulators on the phosphorylation status of vasodilator-stimulated phosphoprotein (VASP) in both human and rat platelets were studied under in vitro and in vivo conditions. sGC-dependent VASP phosphorylation (at Ser(239) and Ser(157)) both by the new direct sGC stimulator YC-1 and by NO donors was examined by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS/PAGE) with different antibodies. One antibody, which recognizes VASP independent of its phosphorylation state, was used to detect the mobility shift of VASP caused by Ser(157) phosphorylation. The other antibody was specifically directed against VASP phosphorylated at Ser(239), the cGMP-dependent protein kinase (PKG) preferred phosphorylation site of VASP. In vitro YC-1 increased both VASP phosphorylation and cyclic guanosine monophosphate (cGMP) levels as did the NO donors 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA/NO) and sodium nitroprusside (SNP). The combination of both types induced a synergistic effect in both VASP phosphorylation and cGMP increase. In rat platelets, similar effects could be shown in vitro. In vivo we observed a significant increase in cGMP and a distinct effect on VASP phosphorylation in rat platelets 1 h after oral administration of YC-1. These biochemical alterations are supported by a significant prolongation in rat-tail bleeding time. Direct stimulators of sGC like YC-1 are on the one hand direct potent stimulators of the cGMP/PKG/VASP pathway in platelets and on the other hand synergize with NO, the physiologic stimulator of sGC. Therefore YC-1-like substances are interesting tools for the development of new cardiovascular drugs with vasodilatory and antithrombotic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.