Colloidal quasicrystals have received increased interest recently due to new insight in exploring their potential for photonic materials as well as for optical devices [Vardeny et al., Nat. Photonics, 2013, 7, 177]. Colloidal quasicrystals in aqueous solutions have been found in systems of micelles with impenetrable cores [Fischer et al., Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 1810]. A simple model potential for micelle-micelle interaction is the step potential, which is infinite for core overlaps and constant for shell overlaps. Dotera et al. performed Monte Carlo simulations of the step potential model and found quasicrystals for specific values of the packing fraction η and the shell-core ratio λ [Dotera et al., Nature, 2014, 506, 208 ]. However, the overlap of real micelles causes repulsive forces, which increase with decreasing core distance. We consider this by introducing a novel model potential with repulsive forces depending on a third parameter α. In a systematic manner we study this more realistic potential with two-dimensional molecular dynamics simulations. For α = 0 the model is similar to the step potential model. For the first time, we provide a comprehensive overview of crystalline, quasicrystalline, and disordered structures as a function of η and λ. Simulations performed with α > 0 show the impact of the repulsive forces. We find that quasicrystalline structures at high densities vanish while new quasicrystalline structures appear at intermediate densities. Our results help to tailor colloidal systems for today's advanced applications in photonics and optical devices.
The excellent mechanical properties of the Ni-based superalloy IN718 mainly result from coherent γ precipitates. Due to a strongly anisotropic lattice misfit between the matrix and the precipitate phase, the particles exhibit pronounced plate-shaped morphologies. Using a phase-field model, we investigate various influencing factors that determine the equilibrium shapes of γ precipitates, minimizing the sum of the total elastic and interfacial energy. Upon increasing precipitate phase fractions, the model predicts increasingly stronger particle-particle interactions, leading to shapes with significantly increased aspect ratios. Matching the a priori unknown interfacial energy density to fit experimental γ shapes is sensitive to the phase content imposed in the underlying model. Considering vanishing phase content leads to 30 % lower estimates of the interfacial energy density, as compared to estimates based on realistic phase fractions of 12 %. We consider the periodic arrangement of precipitates in different hexagonal and rectangular superstructures, which result from distinct choices of point-symmetric and periodic boundary conditions. Further, non-volume conserving boundary conditions are implemented to compensate for strains due to an anisotropic lattice mismatch between the γ matrix and the γ precipitate. As compared to conventional boundary conditions, this specifically tailored simulation configuration does not conflict with the systems periodicity and provides substantially more realistic total elastic energies at high precipitate volume fractions. The energetically most favorable superstructure is found to be a hexagonal precipitate arrangement.c 2020. The manuscript is made available under the license CC-BY-NC-ND 4.0
We develop a phase-field model for the simulation of precipitate microstructure pattern formation in nickel-base superalloys. The model accounts for the local effects from inhomogeneous and anisotropic elastic deformations, which mainly result from the lattice misfit between the precipitates and matrix phase. Further, in each time-step, we consider the chemical driving force for precipitate ripening to instantaneously equilibrate to a homogeneous value, leading to conserved phase volumes. The model is applied to study the equilibrium shape of a 2D single γ -particle embedded in the γ-matrix with varying lattice misfit and γ/γ interface energies. Further, we apply the method of moment invariants to quantify the resulting equilibrium shapes of precipitates, which turns out to be a size independent characterization of the particle shape. Resulting values for the 2D moment invariants of experimental as well as simulated particle shapes are discussed and compared. Considering ideally spherical particles, we find that large values for the γ/γ -interface width lead to systematic deviations in the resulting moment invariants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.