Abstract:The study presents the preliminary results of two classification exercises assessing the capabilities of pre-operational (August 2015) Sentinel-2 (S2) data for mapping crop types and tree species. In the first case study, an S2 image was used to map six summer crop species in Lower Austria as well as winter crops/bare soil. Crop type maps are needed to account for crop-specific water use and for agricultural statistics. Crop type information is also useful to parametrize crop growth models for yield estimation, as well as for the retrieval of vegetation biophysical variables using radiative transfer models. The second case study aimed to map seven different deciduous and coniferous tree species in Germany. Detailed information about tree species distribution is important for forest management and to assess potential impacts of climate change. In our S2 data assessment, crop and tree species maps were produced at 10 m spatial resolution by combining the ten S2 spectral channels with 10 and 20 m pixel size. A supervised Random Forest classifier (RF) was deployed and trained with appropriate ground truth. In both case studies, S2 data confirmed its expected capabilities to produce reliable land cover maps. Cross-validated overall accuracies ranged between 65% (tree species) and 76% (crop types). The study confirmed the high value of the red-edge and shortwave infrared (SWIR) bands for vegetation mapping. Also, the blue band was important in both study sites. The S2-bands in the near infrared were amongst the least important channels. The object based image analysis (OBIA) and the classical pixel-based classification achieved comparable results, mainly for the cropland. As only single date acquisitions were available for this study, the full potential of S2 data could not be assessed. In the future, the two twin S2 satellites will offer global coverage every five days and therefore permit to concurrently exploit unprecedented spectral and temporal information with high spatial resolution.
Abstract:Tree species diversity is a key parameter to describe forest ecosystems. It is, for example, important for issues such as wildlife habitat modeling and close-to-nature forest management. We examined the suitability of 8-band WorldView-2 satellite data for the identification of 10 tree species in a temperate forest in Austria. We performed a Random Forest (RF) classification (object-based and pixel-based) using spectra of manually delineated sunlit regions of tree crowns. The overall accuracy for classifying 10 tree species was around 82% (8 bands, object-based). The class-specific producer's accuracies ranged between 33% (European hornbeam) and 94% (European beech) and the user's accuracies between 57% (European hornbeam) and 92% (Lawson's cypress). The object-based approach outperformed the pixel-based approach. We could show that the 4 new WorldView-2 bands (Coastal, Yellow, Red Edge, and Near Infrared 2) have only limited impact on classification accuracy if only the 4 main tree species (Norway spruce, Scots pine, European beech, and English oak) are to be separated. However, classification accuracy increased significantly using the full spectral resolution if further tree species were included. Beside the impact on overall classification accuracy, the importance of the spectral bands was evaluated with two measures provided by RF. An in-depth analysis of the RF output was carried out to evaluate the impact of reference data quality and the resulting reliability of final class assignments. Finally, an extensive literature review on tree species classification comprising about 20 studies is presented. OPEN ACCESSRemote Sens. 2012, 4 2662
Fine scale maps of vegetation biophysical variables are useful status indicators for monitoring and managing national parks and endangered habitats. Here, we assess in a comparative way four different retrieval methods for estimating leaf area index (LAI) in grassland: two radiative transfer model (RTM) inversion methods (one based on look-up-tables (LUT) and one based on predictive equations) and two statistical modelling methods (one partly, the other entirely based on in situ data). For prediction, spectral data were used that had been acquired over Majella National Park in Italy by the airborne hyperspectral HyMap instrument. To assess the performance of the four investigated models, the normalized root mean squared error (nRMSE) and coefficient of determination (R2) between estimates and in situ LAI measurements are reported (n = 41). Using a jackknife approach, we also quantified the accuracy and robustness of empirical models as a function of the size of the available calibration data set. The results of the study demonstrate that the LUT-based RTM inversion yields higher accuracies for LAI estimation (R2 = 0.91, nRMSE = 0.18) as compared to RTM inversions based on predictive equations (R2 = 0.79, nRMSE = 0.38). The two statistical methods yield accuracies similar to the LUT method. However, as expected, the accuracy and robustness of the statistical models decrease when the size of the calibration database is reduced to fewer samples. The results of this study are of interest for the remote sensing community developing improved inversion schemes for spaceborne hyperspectral sensors applicable to different vegetation types. The examples provided in this paper may also serve as illustrations for the drawbacks and advantages of physical and empirical models. (Résumé d'auteur
Knowledge of the distribution of tree species within a forest is key for multiple economic and ecological applications. This information is traditionally acquired through time-consuming and thereby expensive field work. Our study evaluates the suitability of a visible to near-infrared (VNIR) hyperspectral dataset with a spatial resolution of 0.4 m for the classification of 13 tree species (8 broadleaf, 5 coniferous) on an individual tree crown level in the UNESCO Biosphere Reserve ‘Wienerwald’, a temperate Austrian forest. The study also assesses the automation potential for the delineation of tree crowns using a mean shift segmentation algorithm in order to permit model application over large areas. Object-based Random Forest classification was carried out on variables that were derived from 699 manually delineated as well as automatically segmented reference trees. The models were trained separately for two strata: small and/or conifer stands and high broadleaf forests. The two strata were delineated beforehand using CHM-based tree height and NDVI. The predictor variables encompassed spectral reflectance, vegetation indices, textural metrics and principal components. After feature selection, the overall classification accuracy (OA) of the classification based on manual delineations of the 13 tree species was 91.7% (Cohen’s kappa (κ) = 0.909). The highest user’s and producer’s accuracies were most frequently obtained for Weymouth pine and Scots Pine, while European ash was most often associated with the lowest accuracies. The classification that was based on mean shift segmentation yielded similarly good results (OA = 89.4% κ = 0.883). Based on the automatically segmented trees, the Random Forest models were also applied to the whole study site (1050 ha). The resulting tree map of the study area confirmed a high abundance of European beech (58%) with smaller amounts of oak (6%) and Scots pine (5%). We conclude that highly accurate tree species classifications can be obtained from hyperspectral data covering the visible and near-infrared parts of the electromagnetic spectrum. Our results also indicate a high automation potential of the method, as the results from the automatically segmented tree crowns were similar to those that were obtained for the manually delineated tree crowns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.