The effects of age, sex, and vocal tract configuration on the glottal excitation signal in speech are only partially understood, yet understanding these effects is important for both recognition and synthesis of speech as well as for medical purposes. In this paper, three acoustic measures related to the voice source are analyzed for five vowels from 3145 CVC utterances spoken by 335 talkers (8-39 years old) from the CID database [Miller et al., Proceedings of ICASSP, 1996, Vol. 2, pp. 849-852]. The measures are: the fundamental frequency (F0), the difference between the "corrected" (denoted by an asterisk) first two spectral harmonic magnitudes, H1* - H2* (related to the open quotient), and the difference between the "corrected" magnitudes of the first spectral harmonic and that of the third formant peak, H1* - A3* (related to source spectral tilt). The correction refers to compensating for the influence of formant frequencies on spectral magnitude estimation. Experimental results show that the three acoustic measures are dependent to varying degrees on age and vowel. Age dependencies are more prominent for male talkers, while vowel dependencies are more prominent for female talkers suggesting a greater vocal tract-source interaction. All talkers show a dependency of F0 on sex and on F3, and of H1* - A3* on vowel type. For low-pitched talkers (F0 < or = 175 Hz), H1* - H2* is positively correlated with F0 while for high-pitched talkers, H1* - H2* is dependent on F1 or vowel height. For high-pitched talkers there were no significant sex dependencies of H1* - H2* and H1* - A3*. The statistical significance of these results is shown.
Increases in open quotient are widely assumed to cause changes in the amplitude of the first harmonic relative to the second (H1*–H2*), which in turn correspond to increases in perceived vocal breathiness. Empirical support for these assumptions is rather limited, and reported relationships among these three descriptive levels have been variable. This study examined the empirical relationship among H1*–H2*, the glottal open quotient (OQ), and glottal area waveform skewness, measured synchronously from audio recordings and high-speed video images of the larynges of six phonetically knowledgeable, vocally healthy speakers who varied fundamental frequency and voice qualities quasi-orthogonally. Across speakers and voice qualities, OQ, the asymmetry coefficient, and fundamental frequency accounted for an average of 74% of the variance in H1*–H2*. However, analyses of individual speakers showed large differences in the strategies used to produce the same intended voice qualities. Thus, H1*–H2* can be predicted with good overall accuracy, but its relationship to phonatory characteristics appears to be speaker dependent.
Cognitive operations are supported by dynamically reconfiguring neural systems that integrate processing components widely distributed throughout the brain. The inter-neuronal connections that constitute these systems are powerfully shaped by environmental input. We evaluated the ability of computer-presented brain training games done in school to harness this neuroplastic potential and improve learning in an overall study sample of 583 second-grade children. Doing a 5-minute brain-training game immediately before math or reading curricular content games increased performance on the curricular content games. Doing three 20-minute brain training sessions per week for four months increased gains on school-administered math and reading achievement tests compared to control classes tested at the same times without intervening brain training. These results provide evidence of cognitive priming with immediate effects on learning, and longer-term brain training with far-transfer or generalized effects on academic achievement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.