We have examined the backbone dynamics of two alternating purine-pyrimidine dodecamers. One sequence consists of "pure" GC bases; the other one contains 5-methylcytosines. The effect of the methyl groups on the backbone substates BI/BII was investigated by means of molecular dynamics. The methylation influences, on one hand, the transition barrier between BI and BII and, on the other hand, the state of equilibrium. The kinetic consequences are an increase of the DeltaG of Gp5mC steps by 1.5 kcal/mol and a decrease of the DeltaG of 5mCpG steps by 0.8 kcal/mol (compared with the nonmethylated DNA). Thus, the additive group differentiates between the two occurring dinucleotide steps and renders the phosphate of the 5-methylcytosine more rigid, as proposed by experimental studies. The thermodynamic consequences are an increase of the DeltaG of Gp5mC steps by 1.1 kcal/mol and a decrease of the DeltaG of 5mCpG steps by 0.8 kcal/mol. The reason for this shift in equilibrium is still not completely clear on a molecular basis. But we can conclude that the indirect readout of DNA is influenced by methylation.
Formic acid dimer was chosen as a model system to investigate synchronous double proton transfer by means of variational transition state theory (VTST) for various isotopically modified hydrogen species. The electronic barrier for the double proton transfer was evaluated to be 7.9 kcal/mol, thus being significantly lower than it was determined in previous studies. The tunneling probabilities were evaluated at temperatures from 100 up to 400 K and typical Arrhenius behavior with enhancement by tunneling is observed. When comparing the transmission factors kappa in dependence of the mass of the tunneling hydrogen, it was found that there are two maxima, one at very low masses (e.g., 0.114 amu, corresponding to the muonium entity) and one maximum at around 2 amu (corresponding to deuterium). With the knowledge of the VTST-hydrogen transfer rates and the corresponding tunneling corrections, various tunneling criteria were tested (e.g., Swain-Schaad exponents) and were shown to fail in this reaction in predicting the extent of tunneling. This finding adds another aspect in the ongoing "Tunneling-Enhancement by Enzymes" discussion, as the used tunneling criteria based on experimental reaction rates may fail to predict tunneling behavior correctly.
The implementation of a hybrid QM-MM approach combining ab initio and density functional methods of TURBOMOLE with the molecular mechanics program package CHARMM is described. An interface has been created to allow data exchange between the two applications. With this method the efficient multiprocessor capabilities of TURBOMOLE can be utilized with CHARMM running as a single processor application. Therefore, features of nonparallel running code in CHARMM like the TRAVEL module for locating saddle points or VIBRAN for the calculation of second derivatives can be exploited by running the CPU intensive QM calculations in parallel. To test the methodology, several small systems are studied with both Hartree-Fock and density functional methods and varying QM-MM boundaries. Also, the computationally efficient RI-J method has been examined for use in QM-MM applications. A B(12) cofactor containing cobalt has been studied, to examine systems with a large QM region and transition metals. All tested methods perform satisfactory in comparison with pure quantum calculations. Additionally, algorithms for the characterization of saddle points have been tested for their potential use in QM-MM problems. The TRAVEL module of CHARMM has been applied to the Menshutkin reaction in the condensed phase, and a saddle point was located. This saddle point was verified by calculation of a steepest descent path connecting educt, transition state, and product, and by calculation of vibrational modes.
In this study, the hydration of carbon dioxide and the formation of bicarbonate in human carbonic anhydrase II have been examined. From semiempirical QM/MM molecular dynamics studies, dominant conformations of the protein backbone, possibly contributing to the catalytic activity, have been isolated and further examined by means of density functional QM/MM methods. In agreement with experimental observations, a binding site for cyanate, which acts as an inhibitor, has been located, whereas for carbon dioxide, depending on the conformation of the protein environment, either a different binding site or no binding site has been found. In the latter case, carbon dioxide diffuses barrierless to the zinc-bound oxygen, and then a weakly bound bicarbonate complex is formed. The formed complex is characterized by a long C-O bond to the zinc-bound hydroxide. The nature of the calculated stationary points was verified by determination of vibrational frequencies. Finally, the dissociation of the formed bicarbonate from zinc has been considered. Therefore, a water molecule was included in the QM zone of the QM/MM hybrid potential, and minimization yielded a pentacoordinated intermediate. From a potential energy scan, an activation energy of 6.2 kcal/mol for dissociation of bicarbonate from Zn has been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.