Abstract. The aerodynamic behaviour of a wind turbine airfoil has been measured in a dedicated 2D wind tunnel test at the DNW High Pressure Wind Tunnel in Gottingen (HDG), Germany. The tests have been performed on the DU00W212 airfoil at different Reynolds numbers: 3, 6, 9, 12 and 15 million, and at low Mach numbers (below 0.1). Both clean and tripped conditions of the airfoil have been measured. An analysis of the impact of a wide Reynolds number variation over the aerodynamic characteristics of this airfoil has been performed.
Knowledge on the boundary-layer transition location at large chordReynolds numbers is essential to evaluate the performance of airfoils designed for modern wind-turbine rotor blades. In the present work, a temperature-sensitive paint was used to systematically study boundary-layer transition on the suction side of a DU 91-W2-250 airfoil. The experiments were performed in the High-Pressure Wind Tunnel Göttingen at chord Reynolds numbers up to 12 million and angles-of-attack from -14° to 20°. The coefficients of airfoil lift, drag, and pitching moment were also obtained after integration of the pressure distributions measured on the surface and in the wake of the wind-tunnel model. The global information obtained via temperature-sensitive paint not only enabled the analysis of the change in the transition location with varying angle-of-attack and chord Reynolds number, but also provided an explanation for the evolution of the aerodynamic coefficients measured at stall and post-stall conditions. The stability of the laminar boundary layers investigated in the experiments was analyzed according to linear stability theory. The results of the stability
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.