Most industrial production processes are performed in fed-batch operational mode. In contrast, the screenings for microbial production strains are run in batch mode which results in completely different physiological conditions than relevant for production conditions. This may lead to wrong selections of strains. Silicone elastomer discs containing glucose crystals were developed to realize fed-batch fermentation in shake flasks. No other device for feeding was required. Glucose was fed in this way to Hansenula polymorpha cultures controlled by diffusion. Two strains of H. polymorpha were investigated in shake flasks: the wild-type strain (DSM 70277) and a recombinant strain pC10-FMD (P(FMD)-GFP). The oxygen transfer rate (OTR) and respiratory quotient (RQ) of the cultures were monitored online in shake flasks with a Respiration Activity Monitoring System (RAMOS). Formation of biomass and green fluorescent protein (GFP), pH-drift and the metabolite dynamics of glucose, ethanol and acetic acid were measured offline. With the slow-release technique overflow metabolism could be reduced leading to an increase of 85% in biomass yield. To date, 23.4 g/L cell dry weight of H. polymorpha could be achieved in shake flask. Biomass yields of 0.38-0.47 were obtained which are in the same magnitude of laboratory scale fermentors equipped with a substrate feed pump. GFP yield could be increased by a factor of 35 in Syn6-MES mineral medium. In fed-batch mode 88 mg/L GFP was synthesized with 35.9 g/L fed glucose. In contrast, only 2.5 mg/L with 40 g/L metabolized glucose was revealed in batch mode. In YNB mineral medium over 420-fold improvement in fed-batch mode was achieved with 421 mg/L GFP at 41.3 g/L fed glucose in comparison to less than 1 mg/L in batch mode with 40 g/L glucose.
Most large-scale production processes in biotechnology are performed in fed-batch operational mode. In contrast, the screenings for microbial production strains are run in batch mode, which results in the microorganisms being subjected to different physiological conditions. This significantly affects strain selection. To demonstrate differences in ranking during strain selection depending on the operational mode, screenings were performed in batch and fed-batch modes. Two model populations of the methylotrophic yeast Hansenula polymorpha RB11 with vector pC10-FMD (P(FMD)-GFP) (220 clones) and vector pC10-MOX (P(MOX)-GFP) (224 clones) were applied. For fed-batch cultivations in deep-well microtiter plates, a controlled-release system made of silicone elastomer discs containing glucose was used. Three experimental set-ups were investigated: batch cultivation with (1) glucose as a substrate, which catabolite represses product formation, and (2) glycerol as a carbon source, which is partially repressing, respectively, and (3) fed-batch cultivation with glucose as a limiting substrate using the controlled-release system. These three experimental set-ups showed significant variations in green fluorescent protein (GFP) yield. Interestingly, screenings in fed-batch mode with glucose as a substrate resulted in the selection of yeast strains different from those cultivated in batch mode with glycerol or glucose. Ultimately, fed-batch screening is considerably better than screening in batch mode for fed-batch production processes with glucose as a carbon source.
For the conversion of glucose to 5-keto-D-gluconate (5-KGA), a precursor of the industrially important L-(+)-tartaric acid, Gluconobacter strains were genetically engineered. In order to increase 5-KGA formation, a plasmid-encoded copy of the gene encoding the gluconate:NADP-5 oxidoreductase (gno) was overexpressed in G. oxydans strain DSM 2434. This enzyme is involved in the nonphosphorylative ketogenic oxidation of glucose and oxidizes gluconate to 5-KGA. As the 5-KGA reductase activity depends on the cofactor NADP+, the sthA gene (encoding Escherichia coli transhydrogenase) was cloned and overexpressed in the GNO-overproducing G. oxydans strain. Growth of the sthA-carrying strains was indistinguishable from the G. oxydans wild-type strain and therefore they were chosen for the coupled overexpression of sthA and gno. G. oxydans strain DSM 2343/pRS201-gno-sthA overproducing both enzymes showed an enhanced accumulation of 5-KGA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.