Frame-to-frame tracking of acoustic markers in 2D echocardiographic images for the analysis of myocardial deformation allows discrimination between different transmurality states of myocardial infarction.
The purpose of this study was to compare the accuracy of an automated volumetry software for phantom pulmonary nodules across various 16-slice multislice spiral CT (MSCT) scanners from different vendors. A lung phantom containing five different nodule categories (intraparenchymal, around a vessel, vessel attached, pleural, and attached to the pleura), with each category comprised of 7-9 nodules (total, n = 40) of varying sizes (diameter 3-10 mm; volume 6.62 mm(3)-525 mm(3)), was scanned with four different 16-slice MSCT scanners (Siemens, GE, Philips, Toshiba). Routine and low-dose chest protocols with thin and thick collimations were applied. The data from all scanners were used for further analysis using a dedicated prototype volumetry software. Absolute percentage volume errors (APE) were calculated and compared. The mean APE for all nodules was 8.4% (+/-7.7%) for data acquired with the 16-slice Siemens scanner, 14.3% (+/-11.1%) for the GE scanner, 9.7% (+/-9.6%) for the Philips scanner and 7.5% (+/-7.2%) for the Toshiba scanner, respectively. The lowest APEs were found within the diameter size range of 5-10 mm and volumes >66 mm(3). Nodule volumetry is accurate with a reasonable volume error in data from different scanner vendors. This may have an important impact for intraindividual follow-up studies.
Myocardial deformation imaging based on frame-to-frame tracking of acoustic markers in 2-dimensional echocardiographic images is a powerful novel modality to identify reversible myocardial dysfunction.
Background and Purpose-Imaging of cerebral vein thrombosis is still challenging. Currently, diagnosis is based on CT venography and MRI including MRA and conventional digital subtraction angiography. However, especially in chronic cases, each method has shown its limitations. Newer strategies for MRI are found on molecular imaging using targeted contrast agents. The aim of this study was to prove the feasibility of a novel fibrin-targeted MR contrast agent (EP-2104R; EPIX Pharmaceuticals) for selective imaging of sinus venous thrombosis in an animal model. Methods-Thrombosis of the superior sagittal sinus with human blood was induced in 6 pigs using a combined microsurgical and interventional approach. MRI was then performed before and up to 120 minutes after injection of 4 mol/kg body weight EP-2104R. Molecular imaging was performed with a 3-dimensional high-resolution T1-weighted gradient echo sequence. Time courses of signal-to-noise ratio and contrast-to-noise ratio were analyzed. Thrombi were then surgically removed and the Gadolinium concentration was assessed. Results-In all cases the thrombosis could be successfully induced; the complete MR protocol could be performed in 5 animals. In these cases the thrombi showed selective enhancement after injection of the molecular contrast agent. However, a continuous contrast-to-noise ratio increase was seen up to 120 minutes after contrast administration, achieving a contrast-to-noise ratio of 14.2Ϯ0.7 between clot and the blood pool. Conclusion-The novel fibrin-targeted molecular MR contrast EP-2104R allows selective and high-contrast imaging of cerebral sinus vein thrombosis in an animal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.