Although x-ray computed tomography (CT) has been in clinical use for over 3 decades, spectral optimization has not been a topic of great concern; high voltages around 120 kV have been in use since the beginning of CT. It is the purpose of this study to analyze, in a rigorous manner, the energies at which the patient dose necessary to provide a given contrast-to-noise ratio (CNR) for various diagnostic tasks can be minimized. The authors used cylindrical water phantoms and quasianthropomorphic phantoms of the thorax and the abdomen with inserts of 13 mm diameter mimicking soft tissue, bone, and iodine for simulations and measurements. To provide clearly defined contrasts, these inserts were made of solid water with a 1% difference in density (DD) to represent an energy-independent soft-tissue contrast of 10 Hounsfield units (HU), calcium hydroxyapatite (Ca) representing bone, and iodine (I) representing the typical contrast medium. To evaluate CT of the thorax, an adult thorax phantom (300 x 200 mm2) plus extension rings up to a size of 460 x 300 mm2 to mimic different patient cross sections were used. For CT of the abdomen, we used a phantom of 360 x 200 mm2 and an extension ring of 460 x 300 mm2. The CT scanner that the authors used was a SOMATOM Definition (Siemens Healthcare, Forchheim, Germany) at 80, 100, 120, and 140 kV. Further voltage settings of 60, 75, 90, and 105 kV were available in an experimental mode. The authors determined contrast for the density difference, calcium, and iodine, and noise and 3D dose distributions for the available voltages by measurements. Additional voltage values and monoenergetic sources were evaluated by simulations. The dose-weighted contrast-to-noise ratio (CNRD) was used as the parameter for optimization. Simulations and measurements were in good agreement with respect to absolute values and trends regarding the dependence on energy for the parameters investigated. For soft-tissue imaging, the standard settings of 120-140 kV were found as adequate choices with optimal values increasing for larger cross sections, e.g., for large abdomens voltages higher than 140 kV may be indicated. For bone and iodine imaging the optimum values were generally found at significantly lower voltages of typically below 80 kV. This offers a potential for dose reduction of up to 50%, but demands significantly higher power values in most cases. The authors concluded that voltage settings in CT should be varied more often than is common in practice today and should be chosen not only according to patient size but also according to the substance imaged in order to minimize dose while not compromising image quality. A reduction from 120 to 80 kV, for example, would yield a reduction in patient dose by more than half for coronary CT angiography. The use of lower voltages has to be recommended for contrast medium studies in cardiac and pediatric CT.
High dose rate brachytherapy affords a frequent reassurance of the precise dwell positions of the radiation source. The current investigation proposes a multi-dimensional scaling transformation of both data sets to estimate dwell positions without any external reference. Furthermore, the related distributions of dwell positions are characterized by uni-or bi-modal heavy-tailed distributions. The latter are well represented by α-stable distributions. The newly proposed data analysis provides dwell position deviations with high accuracy, and, furthermore, offers a convenient visualization of the actual shapes of the catheters which guide the radiation source during the treatment.
Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes the main issues of EMT and error detection in brachytherapy. The potential and complementarity of EMT as treatment verification technology will be discussed in relation to in vivo dosimetry and imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.