We have devised an experimental method and apparatus for the simultaneous nondestructive determination of the absolute ion number, ion kinetic energy, and length of bunches of charged particles. We have built and operated a corresponding electronic detector that is based on induced charges and their subsequent low-noise amplification at cryogenic temperatures. We have performed measurements with bunches of low-energy highly charged ions from an electron-beam ion source that show the capability of the methods and their implementation. We discuss requirements for, and applications of, such detectors with a particular view on the obtainable information and their sensitivity.
We have conceived and built the HILITE (High-Intensity Laser-Ion Trap Experiment) Penning-trap setup for the production, confinement and preparation of pure ensembles of highly charged ions in a defined quantum state as a target for various high-intensity lasers. This enables a broad suite of laser-ion interaction studies at high photon energies and/or intensities, such as non-linear photo-ionisation studies. The setup has now been used to perform experiments at one such laser facility, namely the FLASH Free-Electron Laser at DESY in Hamburg, Germany. We describe the experimental possibilities of the apparatus, the results of the first measurements and future experiments at other laser facilities.
Detailed investigations of laser–ion interactions require well‐defined ion targets and detection techniques for high‐sensitivity measurements of reaction educts and products. To this end, we have designed and built the High‐Intensity Laser‐Ion Trap Experiment Penning trap setup, which features various ion‐target preparation techniques including selection, cooling, compression, and positioning as well as destructive and non‐destructive measurement techniques to determine the number of stored ions for all charge states individually and simultaneously. We have recently performed first commissioning experiments of ion deceleration and dynamic ion capture with highly charged ion bunches from an electron beam ion source. We have characterized our single‐pass non‐destructive ion counter in detail and were able to determine the ion velocity as well as the number of ions from the signals acquired.
We report on a new experimental approach for the Doppler correction of X-rays emitted by heavy ions, using novel metallic magnetic calorimeter detectors which uniquely combine a high spectral resolution with a broad bandwidth acceptance. The measurement was carried out at the electron cooler of CRYRING@ESR at GSI, Darmstadt, Germany. The X-ray emission associated with the radiative recombination of cooler electrons and stored hydrogen-like uranium ions was investigated using two novel microcalorimeter detectors positioned under 0∘ and 180∘ with respect to the ion beam axis. This new experimental setup allowed the investigation of the region of the N, M → L transitions in helium-like uranium with a spectral resolution unmatched by previous studies using conventional semiconductor X-ray detectors. When assuming that the rest-frame energy of at least a few of the recorded transitions is well-known from theory or experiments, a precise measurement of the Doppler shifted line positions in the laboratory system can be used to determine the ion beam velocity using only spectral information. The spectral resolution achievable with microcalorimeter detectors should, for the first time, allow intrinsic Doppler correction to be performed for the precision X-ray spectroscopy of stored heavy ions. A comparison with data from a previous experiment at the ESR electron cooler, as well as the conventional method of conducting Doppler correction using electron cooler parameters, will be discussed.
Synopsis We present non-destructive single-pass ion bunch detection and characterisation by measuring the induced image charge in a detection electrode. The presented technique allows direct determination of ion kinetic energy, absolute ion number and spatial ion bunch length. We will show the results of corresponding measurements with bunches of low-energy highly charged ions and discuss the minimum detectable number of charges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.