Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously-renewed source of material for serial femtosecond crystallography. Data collected from sub-10 μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.
The theoretical description of observables in attosecond pump-probe experiments requires a good representation of the system's ionization continuum. For polyelectronic molecules, however, this is still a challenge, due to the complicated short-range structure of correlated electronic wave functions. Whereas quantum chemistry packages (QCP) implementing sophisticated methods to compute bound electronic molecular states are well-established, comparable tools for the continuum are not widely available yet. To tackle this problem, we have developed a new approach that, by means of a hybrid Gaussian-B-spline basis, interfaces existing QCPs with close-coupling scattering methods. To illustrate the viability of this approach, we report results for the multichannel ionization of the helium atom and of the hydrogen molecule that are in excellent agreement with existing accurate benchmarks. These findings, together with the versatility of QCPs to describe a broad range of chemical systems, indicate that this is a valid approach to study the ionization of polyelectronic systems in which correlation and exchange symmetry play a major role.
Direct measurement of autoionization lifetimes by using time-resolved experimental techniques is a promising approach when energy-resolved spectroscopic methods do not work. Attosecond time-resolved experiments have recently provided the first quantitative determination of autoionization lifetimes of the lowest members of the well-known Hopfield series of resonances in N. In this work, we have used the recently developed XCHEM approach to study photoionization of the N molecule in the vicinity of these resonances. The XCHEM approach allows us to describe electron correlation in the molecular electronic continuum at a level similar to that provided by multireference configuration interaction methods in bound state calculations, a necessary condition to accurately describe autoionization, shakeup, and interchannel couplings occurring in this range of photon energies. Our results show that electron correlation leading to interchannel mixing is the main factor that determines the magnitude and shape of the N photoionization cross sections, as well as the lifetimes of the Hopfield resonances. At variance with recent speculations, nonadiabatic effects do not seem to play a significant role. These conclusions are supported by the very good agreement between the calculated cross sections and those determined in synchrotron radiation and attosecond experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.