Biotrophic and hemibiotrophic fungi are successful groups of plant pathogens that require living plant tissue to survive and complete their life cycle. Members of these groups include the rust fungi and powdery mildews and species in the Ustilago, Cladosporium and Magnaporthe genera. Collectively, they represent some of the most destructive plant parasites, causing huge economic losses and threatening global food security. During plant infection, pathogens synthesise and secrete effector proteins, some of which are translocated into the plant cytosol where they can alter the host’s response to the invading pathogen. In a successful infection, pathogen effectors facilitate suppression of the plant’s immune system and orchestrate the reprogramming of the infected tissue so that it becomes a source of nutrients that are required by the pathogen to support its growth and development. This review summarizes our current understanding of the function of fungal effectors in infection.
Summary
During infection, plant pathogens secrete effector proteins to facilitate colonization. In comparison with our knowledge of bacterial effectors, the current understanding of how fungal effectors function is limited. In this study, we show that the effector AvrL567‐A from the flax rust fungus
Melampsora lini
interacts with a flax cytosolic cytokinin oxidase, LuCKX1.1, using both yeast two‐hybrid and
in planta
bimolecular fluorescence assays. Purified LuCKX1.1 protein shows catalytic activity against both N6‐(Δ2‐isopentenyl)‐adenine (2iP) and
trans
‐zeatin (tZ) substrates. Incubation of LuCKX1.1 with AvrL567‐A results in increased catalytic activity against both substrates. The crystal structure of LuCKX1.1 and docking studies with AvrL567‐A indicate that the AvrL567 binding site involves a flexible surface‐exposed region that surrounds the cytokinin substrate access site, which may explain its effect in modulating LuCKX1.1 activity. Expression of AvrL567‐A in transgenic flax plants gave rise to an epinastic leaf phenotype consistent with hormonal effects, although no difference in overall cytokinin levels was observed. We propose that, during infection, plant pathogens may differentially modify the levels of extracellular and intracellular cytokinins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.