The contribution of altered post-transcriptional gene silencing to the development of insulin resistance and type 2 diabetes mellitus so far remains elusive. Here, we demonstrate that expression of microRNA (miR)-143 and 145 is upregulated in the liver of genetic and dietary mouse models of obesity. Induced transgenic overexpression of miR-143, but not miR-145, impairs insulin-stimulated AKT activation and glucose homeostasis. Conversely, mice deficient for the miR-143-145 cluster are protected from the development of obesity-associated insulin resistance. Quantitative-mass-spectrometry-based analysis of hepatic protein expression in miR-143-overexpressing mice revealed miR-143-dependent downregulation of oxysterol-binding-protein-related protein (ORP) 8. Reduced ORP8 expression in cultured liver cells impairs the ability of insulin to induce AKT activation, revealing an ORP8-dependent mechanism of AKT regulation. Our experiments provide direct evidence that dysregulated post-transcriptional gene silencing contributes to the development of obesity-induced insulin resistance, and characterize the miR-143-ORP8 pathway as a potential target for the treatment of obesity-associated diabetes.
Highlights d CerS6, but not CerS5, deficiency protects from obesityassociated insulin resistance d CerS6, but not CerS5, regulates C 16:0 ceramides in mitochondria and MAMs d CerS6-derived C 16:0 sphingolipids interact with Mff d CerS6 and Mff regulate mitochondrial dynamics and insulin resistance in obesity
A lterations in diastolic myocardial mechanics, such as slowed left-ventricular relaxation and elevated left-ventricular stiffness, cause diastolic dysfunction and can lead to heart failure (HF).1 Diastolic left-ventricular stiffness is determined, among others, by the extracellular matrix and the cardiomyocytes, 2 and both components can be stiffer than normal in HF, particularly in HF with preserved ejection fraction (HFpEF). 3,4 In cardiomyocytes, passive stiffness (F passive ) is attributable largely to the giant elastic protein titin.2 The mechanical properties of titin are altered in HF, including human HF with reduced ejection fraction (HFrEF) and HFpEF.
Methods and Results:Titin phosphorylation was assessed in CaMKIIδ/γ double-knockout (DKO) mouse, transgenic CaMKIIδC-overexpressing mouse, and human hearts, by Pro-Q-Diamond/Sypro-Ruby staining, autoradiography, and immunoblotting using phosphoserine-specific titin-antibodies. CaMKII-dependent sitespecific titin phosphorylation was quantified in vivo by mass spectrometry using stable isotope labeling by amino acids in cell culture mouse heart mixed with wild-type (WT) or DKO heart. F passive of single permeabilized cardiomyocytes was recorded before and after CaMKII-administration. All-titin phosphorylation was reduced by >50% in DKO but increased by up to ≈100% in transgenic versus WT hearts. Conserved CaMKII-dependent phosphosites were identified within the PEVK-domain of titin by quantitative mass spectrometry and confirmed in recombinant human PEVK-fragments. CaMKII also phosphorylated the cardiac titin N2B-unique sequence. Phosphorylation at specific PEVK/titin N2B-unique sequence sites was decreased in DKO and amplified in transgenic versus WT hearts. F passive was elevated in DKO and reduced in transgenic compared with WT cardiomyocytes. CaMKII-administration lowered F passive of WT and DKO cardiomyocytes, an effect blunted by titin antibody pretreatment. Human end-stage failing hearts revealed higher CaMKII expression/activity and phosphorylation at PEVK/titin N2B-unique sequence sites than nonfailing donor hearts.
Conclusions:
Myelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin protein production in mice. We found that protein synthesis is dampened in the maturing postnatal peripheral nervous system, and myelination then slows down. Remarkably, sustained activation of MAPK signaling by expression of the Mek1DD allele in mice overcomes the signals that end myelination, resulting in continuous myelin growth. MAPK activation leads to minor changes in transcript levels but massively up-regulates protein production. Pharmacological interference in vivo demonstrates that the effects of activated MAPK signaling on translation are mediated by mTOR-independent mechanisms but in part also by mTOR-dependent mechanisms. Previous work demonstrated that loss of ErbB3/Shp2 signaling impairs Schwann cell development and disrupts the myelination program. We found that activated MAPK signaling strikingly compensates for the absence of ErbB3 or Shp2 during Schwann cell development and myelination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.