This study presents an approach to forest canopy disturbance monitoring in evergreen forests in continental Southeast Asia, based on temporal differences of a modified normalized burn ratio (NBR) vegetation index. We generate NBR values from each available Landsat 8 scene of a given period. A step of 'self-referencing' normalizes the NBR values, largely eliminating illumination/topography effects, thus maximizing inter-comparability. We then create yearly composites of these self-referenced NBR (rNBR) values, selecting per pixel the maximum rNBR value over each observation period, which reflects the most open canopy cover condition of that pixel. The ∆rNBR is generated as the difference between the composites of two reference periods. The methodology produces seamless and consistent maps, highlighting patterns of canopy disturbances (e.g., encroachment, selective logging), and keeping artifacts at minimum level. The monitoring approach was validated within four test sites with an overall accuracy of almost 78% using very high resolution satellite reference imagery. The methodology was implemented in a Google Earth Engine (GEE) script requiring no user interaction. A threshold is applied to the final output dataset in order to separate signal from noise. The approach, capable of detecting sub-pixel disturbance events as small as 0.005 ha, is transparent and reproducible, and can help to increase the credibility of monitoring, reporting and verification (MRV), as required in the context of reducing emissions from deforestation and forest degradation (REDD+).
Rapid urbanization and urban area expansion of sub-Saharan Africa are megatrends of the 21st century. 9Addressing environmental and social problems related to these megatrends requires faster and more efficient urban planning that is based on measured information of the expansion patterns. Urban growth prediction models (UGPMs) provide tools for generating such information by predicting future urban expansion patterns and allowing testing of alternative planning scenarios. We created an UGPM for Zanzibar City in Tanzania by measuring urban expansion in 2004-2009 and 2009-2013, linking the expansion to explanatory variables with a generalized additive model, measuring the accuracy of the created model, and projecting urban growth until 2030 with the business-as-usual and various alternative planning scenarios. Based on the results, the urban area of Zanzibar City expanded by 40% from 2004 to 2013. Spatial patterns of expansion were largely driven by the already existing building pattern and land-use constraints. The created model predicted future urban expansion moderately well and had an area under the curve value of 0.855 and a true skill statistic result of 0.568. Based on the business-as-usual scenario, the city will expand 89% from 2013 until 2030 and will continue to sprawl to new regions at the outskirts of the current built-up area. Establishing new urban centers had the highest impact on directing urban expansion from the tested alternative planning scenarios. However, the impact of all scenarios was low and therefore also other planning solutions such as vertical development, urban growth boundaries, and gradual improvement of the informal areas should be considered in Zanzibar.
Global terrestrial biodiversity hotspots (GBH) represent areas featuring exceptional concentrations of endemism and habitat loss in the world. Unfortunately, geospatial data of natural habitats of the GBHs are often outdated, imprecise, and coarse, and need updating for improved management and protection actions. Recent developments in satellite image availability, combined with enhanced machine learning algorithms and computing capacity, enable cost-efficient updating of geospatial information of these already severely fragmented habitats. This study aimed to develop a more accurate method for mapping closed canopy evergreen natural forest (CCEF) of the Eastern Arc Mountains (EAM) ecoregion in Tanzania and Kenya, and to update the knowledge on its spatial extent, level of fragmentation, and conservation status. We tested 1023 model possibilities stemming from a combination of Sentinel-1 (S1) and Sentinel-2 (S2) satellite imagery, spatial texture of S1 and S2, seasonality derived from Landsat-8 time series, and topographic information, using random forest modelling approach. We compared the best CCEF model with existing spatial forest products from the EAM through independent accuracy assessment. Finally, the CCEF model was used to estimate the fragmentation and conservation coverage of the EAM. The CCEF model has moderate accuracy measured in True Skill Statistic (0.57), and it clearly outperforms other similar products from the region. Based on this model, there are about 296,000 ha of Eastern Arc Forests (EAF) left. Furthermore, acknowledging small forest fragments (1–10 ha) implies that the EAFs are more fragmented than previously considered. Currently, the official protection of EAFs is disproportionally targeting well-studied mountain blocks, while less known areas and small fragments are underrepresented in the protected area network. Thus, the generated CCEF model should be used to design updates and more informed and detailed conservation allocation plans to balance this situation. The results highlight that spatial texture of S2, seasonality, and topography are the most important variables describing the EAFs, while spatial texture of S1 increases the model performance slightly. All in all, our work demonstrates that recent developments in Earth observation allows significant enhancements in mapping, which should be utilized in areas with outstanding biodiversity values for better forest and conservation planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.