Early and efficient harmonization between product design and manufacturing represents one of the most challenging tasks in engineering. Concepts such as simultaneous engineering aim for a product creation process, which addresses both, functional requirements as well as requirements from production. However, existing concepts mostly focus on organizational tasks and heavily rely on the human factor for the exchange of complex information across different domains, organizations or systems. Nowadays product and process design make use of advanced software tools such as computer-aided design, manufacturing and engineering systems (CAD/CAM/CAE). Modern systems already provide a seamless integration of both worlds in a single digital environment to ensure a continuous workflow. Yet, for the holistic harmonization between product and process design, a complete and data consistent digital twin, an adaptation of product and process design for a balanced functionality and manufacturability, as well as systematic long-term data analytics across different product and process designs are missing. This paper presents an exploration concept which couples product design (CAD), process design (CAM), process simulation (CAE) and process adaptation in a single software system. The approach provides insights into correlations and dependencies between input parameters of product/process design and the process output. The insights potentially allow for a knowledge-based adaptation, tackling well-known optimization issues such as parameter choice or operation sequencing. First results are demonstrated using the example of a blade integrated disk (blisk).
Early and efficient harmonization between product design and manufacturing represents one of the most challenging tasks in engineering. Concepts such as simultaneous engineering aim for a product creation process, which addresses both, functional requirements as well as requirements from production. However, existing concepts mostly focus on organizational tasks and heavily rely on the human factor for the exchange of complex information across different domains, organizations or systems. Nowadays product and process design make use of advanced software tools such as computer-aided design, manufacturing and engineering systems (CAD/CAM/CAE). Modern systems already provide a seamless integration of both worlds in a single digital environment to ensure a continuous workflow. Yet, for the holistic harmonization between product and process design, the following aspects are missing: • The digital environment does not provide a complete and data consistent digital twin of the component; this applies especially to the process design and analysis environment • Due to the lack of process and part condition data in the manufacturing environment an adaptation of product and process design for a balanced functionality and manufacturability is hindered • Systematic long-term data analytics across different product and process designs with the ultimate goal to transfer knowledge from one product to the next and to accelerate the entire product development process is not considered This paper presents an exploration concept which couples product design (CAD), process design (CAM), process simulation (CAE) and process adaptation in a single software system. The approach provides insights into correlations and dependencies between input parameters of product/process design and the process output. The insights potentially allow for a knowledge-based adaptation, tackling well-known optimization issues such as parameter choice or operation sequencing. First results are demonstrated using the example of a blade integrated disk (blisk).
The manufacturing process of blade-integrated disks (blisks) represents one of the most challenging tasks in turbomachinery manufacturing. The requirement is to machine complex, thin-walled blade geometries with high aspect ratios made of difficult-to-cut materials. In addition, extremely tight tolerances are required, since the smallest deviations can lead to a reduction in efficiency of the blisk in the later use. Nowadays, the ramp-up phase for the manufacturing of a new blisk is time and cost intensive. To find a suitable manufacturing process that meets the required tolerances of the blisk, many experimental tests with different process parameters and strategies are necessary. The used approach is often trial and error which offers limited testing opportunities, is time consuming and wastes resources. Therefore, the objective of this paper is to develop a knowledge-based process design optimization in blisk manufacturing. For this purpose, this paper picks up the results from our previous work. Based on these results, an experimental validation of the two process design tasks "number of blocks" and "block transition" is conducted. As part of the validation, the results of machining tests on a demonstrator blisk made of Inconel 718 are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.